Priming has been used to improve the performance of germination at the field, and potassium nitrate (KNO 3 ) is a promising compound for this purpose. The nitrate (NO 3 ) could be absorbed, being used in the metabolism of the embryo, through the enzyme nitrate reductase (NR). Besides, the priming could also activate the response of the antioxidant system, becoming the primed seeds more prepared for possible stresses. Thus, the aim of this study was to evaluate the metabolic effect of nitrate in tomato seed germination by the quantification of NR activity, and also evaluate the activity of some antioxidant enzymes as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Tomato seeds were primed using solutions of polyethylene glycol (PEG 6000) -1,1MPa, 50 mM KNO 3 and PEG+KNO 3 . The variables analyzed were germination (germinability, mean germination time, mean germination rate, coefficient of variation of the germination time, uncertainty and synchrony) nitrogen, total proteins and enzymes. The germination data were analyzed using an ANOVA, comparing the averages by Scott-Knott test (P < 0.05). To analyze the nitrogen, protein and enzymatic activities, we used a Kruskal-Wallis test (P < 0.05). The results show an increase in the NR activity, as well as in the antioxidant enzymes. The germination time (t) and germination rate (v) primed in KNO 3 had a better performance compared to the other treatments. In conclusion, the observed benefits in tomato seeds primed with KNO 3 were related to the activity of the enzyme nitrate reductase in the production of nitrite/nitric oxide, which acted promoting a faster germination.
Yerba maté (Ilex paraguariensis, Aquifoliaceae) is a subtropical, evergreen, dioecious, South American tree. In one preliminary study, it was observed that the functional strategy of yerba mate females, aiming to finish reproductive process, was increased transpiration relative to photosynthetic rates compared with males, on self-shaded leaves. We hypothesised that the long-term gas exchange response of males and females can evolve independently of phenological stage and cultivation type. In this spirit, the primary aim of the study was to analyse the physiological sexual dimorphism of this species, evaluating fluctuations of gas exchanges related to microclimate and phenological stages. A field study was conducted on adult plants of yerba maté cultivated in monoculture (MO) and in forest understorey (FUS), and measurements carried out in situ on microclimate and leaf gas exchange parameters. The photosynthetic photon flux density that was attained at leaf level in FUS was reduced roughly 10-fold compared with that in MO. Various leaf age populations were observed during a 2-year period at 2-month intervals and grouped into four categories: young, young-fully-expanded, fully-expanded and old. Young and youngfully-expanded leaves were the most active in photosynthesis. Leaves of female plants showed greater photosynthetic rate than those of male plants, which was expressed on all leaf age categories in MO, but only during vegetative stages previous to flowering and fruit ripening. The photosynthesis of young-fully-expanded leaves of females grown in FUS was superior to males but only during winter growth pause. The stomatal conductance differed in relation to cultivation type and leaf age but did not show the sexual differentiation. Physiological sexual dimorphism in yerba mate is shown to be plastic, responding to environmental conditions. The cost associated to the reproduction of yerba maté could be most easily met showing physiological differentiation of both sexes. A higher reproductive investment of females might be compensated for by exhibiting greater leaf photosynthesis than males that occurs in vegetative stages that precede flowering and fruit ripening. Sexual dimorphism and seasonal changes in Ilex paraguariensis M. Rakocevic et al. M. Rakocevic et al. Sexual dimorphism and seasonal changes in Ilex paraguariensis Ann Appl Biol 154 (2009) 291-301 ª
A three-dimensional digitizing method was used to assess the canopy structure of six Festuca arundinacea (FA)-Trifolium repens (TR) mixtures during the installation stage. Virtual canopy images were synthesized and used to derive light interception and partitioning between species. Computations from images were compared with a simple light model based on Beer's law, in order to analyse within-and between-species foliage dispersion. The total leaf area index of the mixtures ranged from 0·6 to 4·5. The fraction of FA foliage overtopping TR was 9-30%. The mean inclination of FA and TR was 66 and 57 °°°° , respectively. Within-species dispersion parameters of FA and TR were about 0·8 and 1·0, namely clumped and random foliage dispersion, respectively. Although FA was sown in rows, between-species dispersion was random. Lower leaf inclination and lesser clumping in TR compensated foliage overtopping by FA, so that light partitioning between FA and TR (about 80 and 20%, respectively) was similar to the species contribution to total canopy foliage. Since between-species dispersion was random, a simple two-layer light model based on Beer's law provided correct estimations of light partitioning (RMSE = 0·05), although light interception by FA was slightly overestimated because of its clumped dispersion.
The responses of Arabica coffee grown under long-term exposure to e[CO2] integrated structural and functional modifications, which balanced leaf area loss through improvements in leaf and whole-plant photosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.