Endocrine-disrupting chemicals are highly resistant organic compounds, commonly occurring in the aquatic environment, that can interfere with the endocrine system of animals and humans, causing serious chronic diseases. In recent decades, enzymes from oxidoreductases have been studied for their potential to degrade these compounds effectively. In order to use such enzymes repeatedly, it is necessary to ensure their insolubility in water, a method termed enzyme immobilization. We developed novel polyamide/polyethylenimine (PA/PEI) nanofibers as a promising support material for the immobilization of various biomolecules. Our nanofibers are highly suitable due to a unique combination of mechanical endurance provided by polyamide 6 and their affinity toward biomolecules, ensured by numerous PEI amino groups. Enzyme laccase was successfully immobilized onto PA/PEI nanofibers using a simple and fast method, providing exceptional activity and stability of the attached enzyme. We then tested the degradation ability of the PA/PEI-laccase samples on a highly concentrated mixture of endocrine-disrupting chemicals in real wastewater with adjusted pH. The results indicate that the samples were a suitable material for wastewater treatment by degrading a highly concentrated mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac, in real wastewater effluent.
Contamination of potable water by endocrine disrupting chemicals (EDCs) is a growing problem worldwide. One of the possible treatments is the utilization of laccase enzyme catalyzing oxidation of phenolic structures of EDC when anchored in a polymeric nanofiber membrane. Previous studies failed to develop a membrane with a sufficiently active enzyme, or the immobilization process was too complicated and time-consuming. Here, we established an elegant method for immobilizing Trametes versicolor laccase onto polyamide 6 nanofibers (PA6-laccase) via adsorption and glutaraldehyde crosslinking, promoting high enzyme activity and easier applicability in water treatment technology. This simple and inexpensive immobilization ensures both repeated use, with over 88% of initial activity retained after five ABTS catalytic cycles, and enhanced storage stability. PA6-laccase was highly effective in degrading a 50-µM EDC mixture, with only 7% of bisphenol A, 2% of 17α-ethinylestradiol, and 30% of triclosan remaining after a 24-h catalytic process. The PA6-laccase membrane can lead to the improvement of novel technologies for controlling of EDC contamination in potable water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.