In this study, we investigated the antibacterial modification of polymers with biologically active substances in essential oils [EOs; linalool, 4-allylanisole (ALY), and trans-anethole]. These compounds were thermoplastically incorporated into a low-density polyethylene matrix via solid inert carriers [wood flour (WF) and talc and molecular sieves] with physically immobilized EOs. The concentrations of the antibacterial modifiers on the carriers and in the resulting composites were determined with three chromatographic techniques (gas chromatography with mass spectrometry, pyrolysis and gas chromatography with mass spectrometry, and high-performance liquid chromatography). The effects of such modifications to the mechanical properties of the prepared composites were studied by stress-strain analysis. Interactions on the polymer matrix carriers were observed by scanning electron microscopy.The prepared composites were also tested for antibacterial activity against both Gram-negative and Gram-positive bacterial strains. The highest efficiency of isothermal immobilization was found for systems consisting of ALY and WF. This finding was in accordance with microbiological studies. The phase of immobilizing the EOs did not influence the mechanical properties of the studied composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.