Sera of patients with cancer contain membraneous microvesicles (MV) able to induce apoptosis of activated T cells by activating the Fas/Fas ligand pathway. However, the cellular origin of MV found in cancer patients’ sera varies as do their molecular and cellular profiles. To distinguish tumor-derived MV in cancer patients’ sera, we used MAGE 3/6+ present in tumors and MV. Molecular profiles of MAGE 3/6+ MV were compared in Western blots or by flow cytometry with those of MV secreted by dendritic cells or activated T cells. These profiles were found to be distinct for each cell type. Only tumor-derived MV were MAGE 3/6+ and were variably enriched in 42-kDa Fas ligand and MHC class I but not class II molecules. Effects of MV on signaling via the TCR and IL-2R and proliferation or apoptosis of activated primary T cells and T cell subsets were also assessed. Functions of activated CD8+ and CD4+ T lymphocytes were differentially modulated by tumor-derived MV. These MV inhibited signaling and proliferation of activated CD8+ but not CD4+ T cells and induced apoptosis of CD8+ T cells, including tumor-reactive, tetramer+CD8+ T cells as detected by flow cytometry for caspase activation and annexin V binding or by DNA fragmentation. Tumor-derived but not dendritic cell-derived MV induced the in vitro expansion of CD4+CD25+FOXP3+ T regulatory cells and enhanced their suppressor activity. The data suggest that tumor-derived MV induce immune suppression by promoting T regulatory cell expansion and the demise of antitumor CD8+ effector T cells, thus contributing to tumor escape.
BackgroundNatural killer cell cytotoxicity is decreased in patients with acute myeloid leukemia in comparison to that in normal controls. Tumor-derived microvesicles present in patients' sera exert detrimental effects on immune cells and may influence tumor progression.
Design and MethodsWe investigated the microvesicle protein level, molecular profile and suppression of natural killer cell activity in patients with newly diagnosed acute myeloid leukemia.
ResultsThe patients' sera contained higher levels of microvesicles compared to the levels in controls (P<0.001). Isolated microvesicles had a distinct molecular profile: in addition to conventional microvesicle markers, they contained membrane-associated transforming growth factor-β1, MICA/MICB and myeloid blasts markers, CD34, CD33 and CD117. These microvesicles decreased natural killer cell cytotoxicity (P<0.002) and down-regulated expression of NKG2D in normal natural killer cells (P<0.001). Sera from patients with acute myeloid leukemia contained elevated levels of transforming growth factor-β, and urea-mediated dissociation of microvesicles further increased the levels of this protein. Neutralizing anti-transforming growth factor-β1 antibodies inhibited microvesicle-mediated suppression of natural killer cell activity and NKG2D down-regulation. Interleukin-15 protected natural killer cells from adverse effects of tumor-derived microvesicles.
ConclusionsWe provide evidence for the existence in acute myeloid leukemia of a novel mechanism of natural killer cell suppression mediated by tumor-derived microvesicles and for the ability of interleukin-15 to counteract this suppression. factor-β1. Haematologica 2011;96(9):1302-1309. doi:10.3324/haematol.2010 This is an open-access paper.Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1
BackgroundTumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4+CD25highFOXP3+ Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/expansion/and activation of human Treg.Methodology/Principal FindingsTMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4+CD25neg T cells into CD4+CD25highFOXP3+ Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-β1, CTLA-4, granzyme B and perforin expression (p<0.05) and mediated stronger suppression of responder cell (RC) proliferation (p<0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-β1 and/or IL-10 significantly inhibited TMV ability to expand Treg.Conclusions/SignificanceThis study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in supporting immune evasion of human cancers.
+ subset, CD25 high Treg represented 3 F 0.5% inTIL, 1 F 0.3% in PBMC, and 0.4 F 0.2% in normal controls. Tregs in TIL were GITR + , IL-10 + , and TGF-h1 + , although circulating Treg up-regulated CD62L and CCR7 but not GITR, IL-10, or TGF-h1. Treg in TIL mediated stronger suppression (P V 0.001) thanTreg in PBMC of HNSCC patients. The addition of neutralizing IL-10 and TGF-h antibodies almost completely abrogated suppression (5 F 2.51%). Transwell inserts partly prevented suppression (60 F 5% versus 95 F 5%). Conclusions: Suppression in the tumor microenvironment is mediated by a unique subset of Treg, which produce IL-10 and TGF-h1 and do not require cell-to-cell contact between Treg and responder cells for inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.