The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart’s coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and — to a great degree — automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.