As a large-scale instance of dramatic collective behaviour, the 2005 French riots started in a poor suburb of Paris, then spread in all of France, lasting about three weeks. Remarkably, although there were no displacements of rioters, the riot activity did travel. Access to daily national police data has allowed us to explore the dynamics of riot propagation. Here we show that an epidemic-like model, with just a few parameters and a single sociological variable characterizing neighbourhood deprivation, accounts quantitatively for the full spatio-temporal dynamics of the riots. This is the first time that such data-driven modelling involving contagion both within and between cities (through geographic proximity or media) at the scale of a country, and on a daily basis, is performed. Moreover, we give a precise mathematical characterization to the expression “wave of riots”, and provide a visualization of the propagation around Paris, exhibiting the wave in a way not described before. The remarkable agreement between model and data demonstrates that geographic proximity played a major role in the propagation, even though information was readily available everywhere through media. Finally, we argue that our approach gives a general framework for the modelling of the dynamics of spontaneous collective uprisings.
We show that the lower bound to the critical fraction of data needed to infer (learn) the orientation of the anisotropy axis of a probability distribution, determined by Herschkowitz and Opper [Phys.Rev.Lett. 86, 2174 (2001)], is not always valid. If there is some structure in the data along the anisotropy axis, their analysis is incorrect, and learning is possible with much less data points.Comment: 1 page, 1 figure. Comment accepted for publication in Physical Review Letter
We explore the effects of social influence in a simple market model in which a large number of agents face a binary choice: to buy/not to buy a single unit of a product at a price posted by a single seller (monopoly market). We consider the case of positive externalities: an agent is more willing to buy if other agents make the same decision. We consider two special cases of heterogeneity in the individuals' decision rules, corresponding in the literature to the Random Utility Models of Thurstone, and of McFadden and Manski. In the first one the heterogeneity fluctuates with time, leading to a standard model in Physics: the Ising model at finite temperature (known as annealed disorder) in a uniform external field. In the second approach the heterogeneity among agents is fixed; in Physics this is a particular case of the quenched disorder model known as a random field Ising model, at zero temperature. We study analytically the equilibrium properties of the market in the limiting case where each agent is influenced by all the others (the mean field limit), and we illustrate some dynamic properties of these models making use of numerical simulations in an Agent based Computational Economics approach. Considering the optimization of the profit by the seller within the case of fixed heterogeneity with global externality, we exhibit a new regime where, if the mean willingness to pay increases and/or the production costs decrease, the seller's optimal strategy jumps from a solution with a high price and a small number of buyers, to another one with a low price and a large number of buyers. This regime, usually modelled with ad hoc bimodal distributions of the idiosyncratic heterogeneity, arises here for general monomodal distributions if the social influence is strong enough.
We consider a model of socially interacting individuals that make a binary choice in a context of positive additive endogenous externalities. It encompasses as particular cases several models from the sociology and economics literature. We extend previous results to the case of a general distribution of idiosyncratic preferences, called here Idiosyncratic Willingnesses to Pay (IWP).Positive additive externalities yield a family of inverse demand curves that include the classical downward sloping ones but also new ones with non constant convexity. When j, the ratio of the social influence strength to the standard deviation of the IWP distribution, is small enough, the inverse demand is a classical monotonic (decreasing) function of the adoption rate. Even if the IWP distribution is mono-modal, there is a critical value of j above which the inverse demand is non monotonic, decreasing for small and high adoption rates, but increasing within some intermediate range. Depending on the price there are thus either one or two equilibria.Beyond this first result, we exhibit the generic properties of the boundaries limiting the regions where the system presents different types of equilibria (unique or multiple). These properties are shown to depend only on qualitative features of the IWP distribution: modality (number of maxima), smoothness and type of support (compact or infinite). The main results are summarized as phase diagrams in the space of the model parameters, on which the regions of multiple equilibria are precisely delimited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.