Stp1 and Stp2 are homologous transcription factors in yeast that are synthesized as latent cytoplasmic precursors with NH2-terminal regulatory domains. In response to extracellular amino acids, the plasma membrane–localized Ssy1–Ptr3–Ssy5 (SPS) sensor endoproteolytically processes Stp1 and Stp2, an event that releases the regulatory domains. The processed forms of Stp1 and Stp2 efficiently target to the nucleus and bind promoters of amino acid permease genes. In this study, we report that Asi1 is an integral component of the inner nuclear membrane that maintains the latent characteristics of unprocessed Stp1 and Stp2. In cells lacking Asi1, full-length forms of Stp1 and Stp2 constitutively induce SPS sensor–regulated genes. The regulatory domains of Stp1 and Stp2 contain a conserved motif that confers Asi1-mediated control when fused to an unrelated DNA-binding protein. Our results indicate that latent precursor forms of Stp1 and Stp2 inefficiently enter the nucleus; however, once there, Asi1 restricts them from binding SPS sensor–regulated promoters. These findings reveal an unanticipated role of inner nuclear membrane proteins in controlling gene expression.
In yeast the homologous transcription factors Stp1 and Stp2 are synthesized as latent cytoplasmic precursors with N-terminal regulatory domains. In response to extracellular amino acids the regulatory domains are endoproteolytically excised by the plasma membrane-localized SPS sensor. The processed forms of Stp1 and Stp2 efficiently enter the nucleus and induce expression of amino acid permease genes. We recently reported that the inner nuclear membrane protein Asi1 is required to prevent unprocessed forms of Stp1 and Stp2, which ectopically enter the nucleus, from binding SPS sensor-regulated promoters. Here we show that Asi3, an Asi1 homolog, and Asi2 are integral proteins of the inner nuclear membrane that function in concert with Asi1. In cells lacking any of the three Asi proteins, unprocessed full-length forms of Stp1 and Stp2 constitutively induce SPS sensor-regulated genes. Our results demonstrate that the Asi proteins ensure the fidelity of SPS sensor signaling by maintaining the dormant, or repressed state, of gene expression in the absence of inducing signals. This study documents additional components of a novel mechanism controlling transcription in eukaryotic cells.In eukaryotes the nucleoplasm and cytoplasm are separated by the nuclear envelope. The nuclear envelope consists of two closely aligned bilayers, the inner and outer membranes, each with a unique set of resident proteins. The two nuclear membranes are joined at nuclear pore complexes, which function as channels that provide selective entry and exit routes across the nuclear envelope. Aside from rather detailed knowledge regarding the structure of nuclear pores, there is markedly little known regarding non-pore nuclear proteins (1). However, accumulating data indicate that nuclear envelope proteins participate in a variety of important processes including maintenance of nuclear architecture, chromatin organization, signaling, and gene expression (1-3). Significantly, mutations in genes encoding nuclear envelope proteins are linked to at least 15 inherited human diseases and syndromes (4, 5).In mammalian cells, nuclear lamins are involved in an extensive network of protein-protein interactions, including inner nuclear membrane proteins and transcriptional regulators, some of which bind DNA (3, 6). Although yeast cells lack lamin homologs (7), processes associated with the inner nuclear membrane have been shown to influence patterns of gene expression. For example, although silencing is not obligatorily linked to perinuclear anchoring (8), recruitment of chromatin to the nuclear periphery can facilitate gene repression (9). Evidence obtained using genome-wide approaches suggest that transcriptionally active regions of chromosomes localize to nuclear pore complexes (10, 11). Consistently, a number of actively expressed genes have been found to interact with the nucleoporin Nup2; the interactions occur at the promoter region of genes and appear to correlate with early events of gene expression (12, 13). Together findings in yeast and metazoan...
The nuclear envelope consists of inner and outer nuclear membranes. Whereas the outer membrane is an extension of the endoplasmic reticulum, the inner nuclear membrane (INM) represents a unique membranous environment containing specific proteins. The mechanisms of integral INM protein degradation are unknown. Here, we investigated the turnover of Asi2, an integral INM protein in Saccharomyces cerevisiae. We report that Asi2 is degraded by the proteasome independently of the vacuole and that it exhibited a half-life of ,45 min. Asi2 exhibits enhanced stability in mutants lacking the E2 ubiquitin conjugating enzymes Ubc6 or Ubc7, or the E3 ubiquitin ligase Doa10. Consistent with these data, Asi2 is post-translationally modified by poly-ubiquitylation in a Ubc7-and Doa10-dependent manner. Importantly Asi2 degradation is significantly reduced in a sts1-2 mutant that fails to accumulate proteasomes in the nucleus, indicating that Asi2 is degraded in the nucleus. Our results reveal a molecular pathway that affects the stability of integral proteins of the inner nuclear membrane and indicate that Asi2 is subject to protein quality control in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.