Behavioural and functional neuroanatomy studies demonstrate that mental rotation of body parts is carried out through a sort of inner motor simulation. Here we examined whether changes of hands posture influence the mental rotation of hands and feet. Twenty healthy subjects were asked to verbally judge the laterality of hands and feet pictures in two different postural conditions. In one condition, subjects kept hands on their knees in anatomical position; in the other, their hands were kept in an unusual posture with intertwined fingers, behind the back. Results show that mental rotation of hands but not of feet was influenced by changes in hands posture. Indeed, while mental rotation of hands was faster in the front than in the back hands position, no similar effect was found when mentally rotating feet. Thus, sensory-motor and postural information coming from the body may influence mental rotation of body parts according to specific, somatotopic rules.
Purposes: To determine whether somatosensory temporal discrimination will reliably detect subclinical sensory impairment in patients with various forms of primary focal dystonia. Methods:We tested the somatosensory temporal discrimination threshold (STDT) in 82 outpatients affected by cranial, cervical, laryngeal and hand dystonia. Results were compared with those for 61 healthy subjects and 26 patients with hemifacial spasm, a non-dystonic disorder. The STDT was tested by delivering paired stimuli starting with an interstimulus interval of 0 msec followed by a progressively increasing interstimulus interval. Results:STDT was abnormal in all the different forms of primary focal dystonias in all three body regions (eye, hand and neck), regardless of the distribution and severity of motor symptoms. Receiver operating characteristic curve analysis calculated in the three body regions yielded high diagnostic sensitivity and specificity for STDT abnormalities.
Neurophysiological studies in animals show that basal ganglia are involved not only in motor and nonmotor timing functions but also in integrating tactile and visual signals delivered in the peripersonal space. We tested temporal discrimination of cross-modal and unimodal stimuli in 13 controls and 14 patients with writer's cramp, a disorder supposedly linked to dysfunction of basal ganglia. Subjects were asked to discriminate whether pairs of visual, tactile, or visuotactile stimuli were simultaneous or sequential (temporal discrimination threshold) and which stimulus preceded the other (temporal order judgment). Patients were impaired in temporal processing of tactile and cross-modal stimuli. A significant positive correlation between temporal deficits and the severity of disability was detected for both affected and unaffected sides. Findings suggest that multimodal and not only modality-specific temporal processing is defective in focal hand dystonia. Deficits of temporal processing of stimuli delivered to the unaffected side may represent a behavioral index of the susceptibility to develop dystonia and thus have remarkable practical and theoretical implications.
DYT1 primary torsion dystonia is an autosomal dominant movement disorder due to a 3-bp GAG deletion in the TOR1A gene, which becomes manifest in only 30-40% of mutation carriers. Investigating the factors regulating this reduced penetrance might add new insight into the mechanisms underlying the disease. The pathophysiology of dystonia has been related to basal ganglia dysfunctions that lead to the most prominent motor symptoms. However, subclinical sensory deficits have also been reported, particularly in adult-onset focal dystonia. Sensory abnormalities in different forms of sporadic dystonia have been revealed by using a psychophysical method, namely, the temporal discrimination threshold (TDT), quantified as the shortest time interval at which the two stimuli are perceived as separate. Little or no information about the presence of sensory abnormalities in DYT1 gene manifesting and non-manifesting carriers is available. With the aim of disclosing possible associations between sensory deficits and the DYT1 mutation, we assessed TDTs of DYT1 manifesting patients (n = 9); DYT1 non-manifesting relatives (n = 11); non-carrier relatives (n = 9); external control subjects (n = 11). Pairs of tactile, visual or visuo-tactile stimuli were delivered in blocked, counterbalanced order. Intervals between stimuli increased from 0 to 400 ms (in 10 ms steps). On each trial, subjects had to report whether stimuli occurred simultaneously or asynchronously. We measured the first out of three consecutive inter-stimulus intervals at which subjects recognized the two stimuli as temporally separated (TDT) and the first of three consecutive intervals at which they also reported correctly which stimulus in the pair preceded (or followed) the other temporal order judgment (TOJ). Results showed higher tactile and visuo-tactile TDTs and TOJs in DYT1 carriers, both manifesting and non-manifesting, compared with non-carrier relatives and with external control subjects (for all comparisons, P < 0.039). This finding indicates that the DYT1 mutation determines subclinical sensory alterations, which could be disclosed by a psychophysical task. Moreover, these results have the notable implication that sensory deficits in dystonia are not a mere consequence of abnormal movements, but they may even occur before overt clinical manifestations, representing a subclinical phenotype in DYT1 mutation carriers.
Despite behavioral evidence showing placebo modulations of motor performance, the neurophysiological underpinnings of these effects are still unknown. By applying transcranial magnetic stimulation (TMS) over the primary motor cortex, we investigated whether a placebo modulation of force could change the excitability of the corticospinal system. Healthy human volunteers performed a motor task by pressing a piston as strongly as possible with the right index finger. Two experimental groups were instructed that treatment with peripheral low-frequency transcutaneous electrical nerve stimulation (TENS) applied on the first dorsal interosseus would induce force enhancement. One experimental group was conditioned about the effects of TENS with a surreptitious amplification of the visual feedback signaling the force level. The other group, instead, was only verbally influenced, without conditioning. At the end of the instructive placebo procedure, the two experimental groups reached higher levels of force, believed that TENS had been effective and expected to perform better compared with two control groups, who were not influenced about TENS. Moreover, the experimental groups presented enhanced excitability of the corticospinal system in the muscle specifically involved in the task (first dorsal interosseus), as shown by increased amplitude of the motor evoked potentials and decreased duration of the cortical silent period (the latter only in the conditioned group). Crucially, the TMS pulse was delivered when all the subjects exerted the same amount of force, ruling out bottom-up influences. These findings hint at a top-down, cognitive enhancement of corticospinal excitability as a neural signature of placebo modulation of motor performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.