Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high δ15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.
Coral responses to degrading water quality are highly variable between species and depend on their trophic plasticity, acclimatization potential, and stress resistance. To assess the nutritional status and metabolism of the common scleractinian coral, Stylophora subseriata, in situ experiments were carried along a eutrophication gradient in Spermonde Archipelago, Indonesia. Coral fragments were incubated in light and dark chambers to measure photosynthesis, respiration, and calcification in a number of shallow reefs along the gradient. Chlorophyll a (chl a), protein content, maximum quantum yield (F v / F m ), and effective quantum yield (U PS II) were measured on the zooxanthellae, in addition to host tissue protein content and biomass. Photosynthetic rates were 2.5-fold higher near-shore than mid-shelf due to higher areal zooxanthellae and chl a concentrations and a higher photochemical efficiency (U PS II). A 2-and 3-fold increase in areal host tissue protein and biomass was found, indicating a higher nutritional supply in coastal waters. Dark respiration, however, showed no corresponding changes. There was a weak correlation between calcification and photosynthesis (Pearson r = 0.386) and a lack of metabolic stress, as indicated by constant respiration and F v /F m and the ''clean'' and healthy appearance of the colonies in spite of high turbidity in near-shore waters. The latter suggests that part of the energetic gains through increased auto-and heterotrophy were spent on metabolic expenditures, e.g., mucus production. While coastal pollution is always deleterious to the reef ecosystem as a whole, our results show that the effect on corals may not always be negative. Thus, S. subseriata may be one of the few examples of corals actually profiting from land-based sources of pollution.
Increased nutrient inputs to temperate coastal waters have led to increased occurrences of macroalgal blooms worldwide. To identify nutrients that are limiting to macroalgae and to determine whether different forms of these nutrients and long-term ambient nutrient conditions affect macroalgal response, we used in situ enrichment methods and tested the response of 2 bloom-forming species of macroalgae, Ulva lactuca and Gracilaria tikvahiae, from shallow estuaries of Waquoit Bay, Massachusetts, USA, that receive different land-derived N inputs. We enriched caged macroalgal fronds with nitrate, ammonium, phosphate, and N + P combinations, and measured growth, nutrient content, and δ 15 N signatures of fronds after 2 wk of incubation. In these estuaries, P did not limit growth, however, the 2 species differed in growth response to N additions. Growth of U. lactuca was greater in Childs River (CR), the estuary with higher nitrate inputs, than in Sage Lot Pond (SLP); growth in SLP increased with nitrate and ammonium enrichment. In contrast, growth of G. tikvahiae was greater in SLP than in CR, but had no growth response to N enrichment in either site. C and N contents differed initially between species and sites, and after nutrient enrichment. Final tissue % N increased and C:N decreased after nitrate and ammonium enrichment. δ 15 N values of the macroalgae demonstrated uptake of the experimental fertilizers, and a higher affinity and faster turnover of internal N pools with ammonium than nitrate enrichment in both species. We suggest that U. lactuca blooms in areas with both high nitrate and ammonium water column concentrations, and is more N-limited in oligotrophic waters where DIN levels are too low to sustain high growth rates. G. tikvahiae has a greater N storage capacity than U. lactuca, which may allow it to grow in less nutrientrich waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.