Today's mechatronics relies on conventional transducers, i.e. lumped sensors and actuators with rigid construction. Future consumer products, medical devices and manufacturing processes require sensing and actuation systems with high count and density of individual transducer units. Such systems can be addressed as distributed transducers. Building distributed sensing and actuation systems with conventional transducers is economically unaffordable, and an alternative solution is needed. In this work we propose and study a methodology to build such distributed sensor and actuator systems from soft bending smart material transducers. Individual transducer units can be separated from the planar material substrate by cutting and etching techniques, and transducer counts and densities are only limited by the available smart materials and equipment. In this study we use laser ablation techniques to separate individual transducer units from the ionic polymer-metal composite (IPMC) sheets, and produce translational actuation units on the bending material substrate. IPMCs are manufactured in-house, different bending structure geometries are studied, and four different designs of the cm-scale translational platform units are realized and validated experimentally. The results demonstrate that it is possible to etch and cut a multitude of actuation units into planar bending smart material transducers, that bending actuation can be used to realize translation, and that the designs can be further miniaturized. Therefore, bending smart materials can be utilized to build monolithic distributed transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.