Clinical studies show electrical stimulation (ES) to be a potential therapy for the healing and regeneration of various tissues. Understanding the mechanisms of cell response when exposed to electrical fields can therefore guide the optimization of clinical applications. In vitro experiments aim to help uncover those, offering the advantage of wider input and output ranges that can be ethically and effectively assessed. However, the advancements in in vitro experiments are difficult to reproduce directly in clinical settings. Mainly, that is because the ES devices used in vitro differ significantly from the ones suitable for patient use, and the path from the electrodes to the targeted cells is different. Translating the in vitro results into in vivo procedures is therefore not straightforward. We emphasize that the cellular microenvironment's structure and physical properties play a determining role in the actual experimental testing conditions and suggest that measures of charge distribution can be used to bridge the gap between in vitro and in vivo. Considering this, we show how in silico finite element modelling (FEM) can be used to describe the cellular microenvironment and the changes generated by electric field (EF) exposure. We highlight how the EF couples with geometric structure to determine charge distribution. We then show the impact of time dependent inputs on charge movement. Finally, we demonstrate the relevance of our new in silico model methodology using two case studies: (i) in vitro fibrous Poly(3,4ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS) scaffolds and (ii) in vivo collagen in extracellular matrix (ECM).
Clinical studies show electrical stimulation (ES) to be a potential therapy for the healing and regeneration of various tissues. Understanding the mechanisms of cell response when exposed to electrical fields can therefore guide the optimization of clinical applications. In vitro experiments aim to help uncover those, offering the advantage of wider input and output ranges that can be ethically and effectively assessed. However, the advancements in in vitro experiments are difficult to reproduce directly in clinical settings. Mainly, that is because the ES devices used in vitro differ significantly from the ones suitable for patient use, and the path from the electrodes to the targeted cells is different. Translating the in vitro results into in vivo procedures is therefore not straightforward. We emphasize that the cellular microenvironment's structure and physical properties play a determining role in the actual experimental testing conditions and suggest that measures of charge distribution can be used to bridge the gap between in vitro and in vivo. Considering this, we show how in silico finite element modelling (FEM) can be used to describe the cellular microenvironment and the changes generated by electric field (EF) exposure. We highlight how the EF couples with geometric structure to determine charge distribution. We then show the impact of time dependent inputs on charge movement. Finally, we demonstrate the relevance of our new in silico model methodology using two case studies: (i) in vitro fibrous Poly(3,4ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS) scaffolds and (ii) in vivo collagen in extracellular matrix (ECM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.