Myo-inositol exerts many cellular functions, which include osmo-protection, membrane functioning, and secondary messaging. Its Na+/myo-inositol co-transporter SLC5A3 is expressed in muscle tissue and further accumulates in myositis. In this study we focused on the peculiar subgroup of sporadic inclusion body myositis (IBM), in which auto-inflammatory responses and degenerative changes co-exist. A cohort of nine patients was selected with clinically confirmed IBM, in which SLC5A3 protein was immune-localized to the different tissue constituents using immunofluorescence, and expression levels were evaluated using Western blotting. In normal muscle tissue, SLC5A3 expression was restricted to blood vessels and occasional low levels on muscle fiber membranes. In IBM tissues, SLC5A3 staining was markedly increased, with discontinuous staining of the muscle fiber membranes, and accumulation of SLC5A3 near inclusions and on the rims of vacuoles. A subset of muscle-infiltrating auto-aggressive immune cells was SLC5A3 positive, of which most were T-cells and M1 lineage macrophages. We conclude that SLC5A3 is overexpressed in IBM muscle, where it associates with protein aggregation and inflammatory infiltration. Based on our results, functional studies could be initiated to explore the possibilities of therapeutic osmolyte pathway intervention for preventing protein aggregation in muscle cells.
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder of the central nervous system (CNS). The migration of immune cells into the CNS is essential for its development, and plasma membrane molecules play an important role in triggering and maintaining the inflammation. We previously identified ninjurin2, a plasma membrane protein encoded by NINJ2 gene, as involved in the occurrence of relapse under Interferon-β treatment in MS patients. The aim of the present study was to investigate the involvement of NINJ2 in inflammatory conditions and in the migration of monocytes through the blood–brain barrier (BBB). We observed that NINJ2 is downregulated in monocytes and in THP-1 cells after stimulation with the pro-inflammatory cytokine LPS, while in hCMEC/D3 cells, which represent a surrogate of the BBB, LPS stimulation increases its expression. We set up a transmigration assay using an hCMEC/D3 transwell-based model, finding a higher transmigration rate of monocytes from MS subjects compared to healthy controls (HCs) in the case of an activated hCMEC/D3 monolayer. Moreover, a positive correlation between NINJ2 expression in monocytes and monocyte migration rate was observed. Overall, our results suggest that ninjurin2 could be involved in the transmigration of immune cells into the CNS in pro-inflammatory conditions. Further experiments are needed to elucidate the exact molecular mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.