Plasma protein binding can be an effective means of improving the pharmacokinetic properties of otherwise short lived molecules. Using peptide phage display, we identified a series of peptides having the core sequence DICLPRWGCLW that specifically bind serum albumin from multiple species with high affinity. These peptides bind to albumin with 1:1 stoichiometry at a site distinct from known small molecule binding sites. Using surface plasmon resonance, the dissociation equilibrium constant of peptide SA21 (Ac-RLIEDICLPRWGCLWEDD-NH 2 ) was determined to be 266 ؎ 8, 320 ؎ 22, and 467 ؎ 47 nM for rat, rabbit, and human albumin, respectively. SA21 has an unusually long half-life of 2.
This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables.
A sheath-flow capillary electrophoresis-mass spectrometry (CE-MS) system utilizing a fully integrated large-bore stainless-steel emitter electrode tapered at the end for micro-ionspray operation has been developed and evaluated. A separation capillary with an outer diameter of up to 360 microm was inserted into the electrode thus forming a void volume of less than 15 nL between the capillary end and the electrospray ionisation (ESI) tip. The sheath liquid, usually methanol-water (80:20) with 0.1% formic acid for positive ion mode or methanol for negative ion mode, was delivered at 0.5-1.0 microL/min. Unlike previously reported CE-MS interfaces, the CE-MS probe was incorporated directly onto an Applied Biosystems/MDS SCIEX orthogonal-spray Turbo "V" ion source for ease of use and automatic operation. This integration enables fast and facile coupling and replacement of the separation capillary without interrupting the ion source configuration, and the sheath liquid supply. The reusable electrospray electrode was precisely fabricated and aligned with the length of the nebulizing gas tube for improved reproducibility. Automation was achieved through software control of both CE and tandem MS (MS/MS) for unattended batch sample analysis. The system was evaluated for attomole- to low femtomole-level profiling of model peptides and protein mixtures, bisphosphates, as well as antiviral nucleosidic drugs in cellular extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.