Parthenium hysterophorus is a weed of global concern with high threshold of tolerance against most of biotic and abiotic stresses. Phytochemical profile and in vitro antioxidant analysis may help in understanding its tolerance to stresses. Root, stem, leaf, phyllary, and receptacle (including disc and ray florets) were chemotyped employing GC tof-MS and assessed for antioxidant activity by DPPH, FRAP, HRSA, and TAC assays. Phytochemicals identified were terpenes, fatty acids, hydrocarbons, phytosterols, and compounds of miscellaneous chemical nature. Organ-specific maximum concentration of metabolite was β-vatirenene (root), hexadecanoic acid methylester (stem), aristolene epoxide (leaf), hexadecanoic acid methylester (phyllary), and hexadecanoic acid methylester (receptacle). Identified metabolites could be associated with stress tolerance mechanisms, basic metabolism, and allelopathy, etc. Root extracts showed highest antioxidant potential followed by receptacle. It can be concluded that diverse and unique phytochemical profile and great antioxidant potential make P. hysterophorus stress-tolerant, hence a weed of global habitat.
Seismic force, predominantly being an inertia force depends on the mass of the structure. As the mass of the structure increases the seismic forces also increase causing the requirement of even heavier sections to counter that heavy forces. And these heavy sections further increase the mass of the structure leading to even heavier seismic forces. Structural designers are met with huge challenge to balance these contradictory physical phenomena to make the structure safe. The structure no more can afford to be rigid.
This introduces the concept of ductility. The structures are made ductile, allowing it yield in order to dissipate the seismic forces. A framed structure can be easily made ductile by properly detailing of the reinforcement. But again, as the building height goes beyond a certain limit, these framed structure sections (columns) gets larger and larger to the extent that they are no more practically feasible in a structure. There comes the role of shear walls. Shear walls provide ample amount of stiffness to the building frame resisting loads through in plane bending. But they inherently make the structure stiffer. So, there must be a balance between the amount of shear walls and frame elements present in a structure for safe and economic design of high-rise structures.
Here an attempt has been made to study the behavior of different structures of reinforced concrete with different heights with and without shear walls. Coupled shear walls have also been studied to understand the comparative merit or demerit of framed structures with shear wall structures. Studies have been carried out on sample model structures and analysis has been carried out by ETABS software. It has been ensured to consider sample models that represent the current practices in structural design to include different structural configurations. Models having varied structural configurations like framed, shear wall, coupled shear wall, central core shear wall, core in core etc. have been taken into consideration. The inherent asymmetry present in the structures have also been dealt.
The results have been tabulated and plotted to study their comparative behavior and interaction with each other. The findings of the study have been summarized and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.