The thermal behavior of a canned motor also depends on the losses and the cooling capability, and these losses cause an increase in the temperature of the stator winding. This paper focuses on the modeling and simulation of the thermal fields of the large canned induction motor by different calculation methods of water friction loss. The values of water friction losses are set as heat sources in the corresponding clearance of water at different positions along the duct and are calculated by the analytical method, loss separation test method, and by assuming the values that may be larger than the experimental results and at zero. Based on Finite volume method (FVM), 3D turbulent flow and heat transfer equations of the canned motor are solve numerically to obtain the temperature distributions of different parts of the motor. The analysis results of water friction loss are compared with the measurements, obtained from the total losses using the loss separation method. The results show that the magnitude of water friction loss within various parts of the motor does not affect the position of peak temperature and the tendency of the temperature distribution of windings. This paper is highly significant for the design of cooling structures of electrical machines.
This paper presents an experimental evaluation of a closed loop lake water heat pump (LWHPs) system based on the slinky coiled configuration. Initially, a mathematical model is developed in the Engineering Equation Solver (EES) for the heat pump system and the submerged coils in a lake. System performance is determined for the submerged slinky copper coils under the various operating conditions. Afterwards, parametric analysis is performed considering different influencing parameters, such as the lake water temperature, ambient temperature, and mass flow rate of the circulating fluid at constant lake depth of 4 ft. The experimental setup is developed for 3.51 kW cooling capacity after cooling load calculation for a small room. In the current study, slinky copper coils are used to exchange heat with lake water. The experimental setup is installed in Taxila, Pakistan, and the system’s performance is analyzed during selected days. After experimentation based on hourly and daily operation characteristics, it is observed that the lake water temperature has significant influence on the heat transfer rate between slinky coil and lake water. While the lake water temperature in summer decreases and increases in winter with the depth. The resulted daily average coefficient of performance (COP) of the system is within the range of 3.24–3.46 during the selected days of cooling season. Based on these results, it can be concluded that the LWHP systems can be considered a viable solution for Pakistan having a well-established canal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.