BackgroundBreast tumor growth and recurrence are driven by an infrequent population of breast tumor-initiating cells (BTIC). We and others have reported that the frequency of BTIC is orders of magnitude higher when breast tumor cells are propagated in vitro as clonal spheres, termed tumorspheres, by comparison to adherent cells. We exploited the latter to screen > 35,000 small molecules to identify agents capable of targeting BTIC. We unexpectedly discovered that selective antagonists of serotonin signaling were among the hit compounds. To better understand the relationship between serotonin and BTIC we expanded our analysis to include monoamine oxidase-A (MAO-A), an enzyme that metabolizes serotonin.MethodsWe used the Nanostring technology and Western blotting to determine whether MAO-A is expressed in human breast tumor cell lines cultured as tumorspheres by comparison to those grown as adherent cells. We then determined whether MAO-A activity is required for tumorsphere formation, a surrogate in vitro assay for BTIC, by assessing whether selective MAO-A inhibitors affect the frequency of tumorsphere-forming cells. To learn whether MAO-A expression in breast tumor cells is associated with other reported properties of BTIC such as anticancer drug resistance or breast tumor recurrence, we performed differential gene expression analyses using publicly available transcriptomic datasets.ResultsTumorspheres derived from human breast tumor cell lines representative of every breast cancer clinical subtype displayed increased expression of MAO-A transcripts and protein by comparison to adherent cells. Surprisingly, inhibition of MAO-A activity with selective inhibitors reduced the frequency of tumorsphere-forming cells. We also found that increased MAO-A expression is a common feature of human breast tumor cell lines that have acquired anticancer drug resistance and is associated with poor recurrence-free survival (RFS) in patients that experienced high-grade, ER-negative (ER−) breast tumors.ConclusionsOur data suggests that MAO-A activity is required for tumorsphere formation and that its expression in breast tumor cells is associated with BTIC-related properties. The discovery that a selective MAO-A inhibitor targets tumorsphere-forming cells with potencies in the nanomolar range provides the first evidence of this agent’s anticancer property. These data warrant further investigation of the link between MAO-A and BTIC.
Background: Breast tumor initiating cells (BTIC) are stem-like cells that initiate and sustain tumor growth, and drive disease recurrence. Identifying therapies targeting BTIC has been hindered due primarily to their scarcity in tumors. We previously reported that BTIC frequency ranges between 15% and 50% in multiple mammary tumors of 3 different transgenic mouse models of breast cancer and that this frequency is maintained in tumor cell populations cultured in serum-free, chemically defined media as non-adherent tumorspheres. The latter enabled high-throughput screening of small molecules for their capacity to affect BTIC survival. Antagonists of several serotonin receptors (5-HTRs) were among the hit compounds. The most potent compound we identified, SB-699551, selectively binds to 5-HT5A, a Gα i/o protein coupled receptor (GPCR). Methods: We evaluated the activity of structurally unrelated selective 5-HT5A antagonists using multiple orthogonal assays of BTIC frequency. Thereafter we used a phosphoproteomic approach to uncover the mechanism of action of SB-699551. To validate the molecular target of the antagonists, we used the CRISPR-Cas9 gene editing technology to conditionally knockout HTR5A in a breast tumor cell line. Results: We found that selective antagonists of 5-HT5A reduced the frequency of tumorsphere initiating cells residing in breast tumor cell lines and those of patient-derived xenografts (PDXs) that we established. The most potent compound among those tested, SB-699551, reduced the frequency of BTIC in ex vivo assays and acted in concert with chemotherapy to shrink human breast tumor xenografts in vivo. Our phosphoproteomic experiments established that exposure of breast tumor cells to SB-699551 elicited signaling changes in the canonical Gα i/o-coupled pathway and the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis. Moreover, conditional mutation of the HTR5A gene resulted in the loss of tumorsphere initiating cells and BTIC thus mimicking the effect of SB-699551. Conclusions: Our data provide genetic, pharmacological and phosphoproteomic evidence consistent with the ontarget activity of SB-699551. The use of such agents in combination with cytotoxic chemotherapy provides a novel therapeutic approach to treat breast cancer.
Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.