MRI translation models learn a mapping from an acquired source contrast to an unavailable target contrast. Collaboration between institutes is essential to train translation models that can generalize across diverse datasets. That said, aggregating all imaging data and training a centralized model poses privacy problems. Recently, federated learning (FL) has emerged as a collaboration framework that enables decentralized training to avoid sharing of imaging data. However, FLtrained translation models can deteriorate by the inherent heterogeneity in the distribution of MRI data. To improve reliability against domain shifts, here we introduce a novel specificity-preserving FL method for MRI contrast translation. The proposed approach is based on an adversarial model that adaptively normalizes the feature maps across the generator based on site-specific latent variables. Comprehensive FL experiments were conducted on multi-site datasets to show the effectiveness of the proposed approach against prior federated methods in MRI contrast translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.