Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Geochimica et Cosmochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Geochimica et Cosmochimica Acta, 139, August 2014, 10.1016/j.gca.2014 Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
As demonstrated at Anak Krakatau on December 22nd, 2018, tsunamis generated by volcanic flank collapse are incompletely understood and can be devastating. Here, we present the first high-resolution characterisation of both subaerial and submarine components of the collapse. Combined Synthetic Aperture Radar data and aerial photographs reveal an extensive subaerial failure that bounds pre-event deformation and volcanic products. To the southwest of the volcano, bathymetric and seismic reflection data reveal a blocky landslide deposit (0.214 ± 0.036 km3) emplaced over 1.5 km into the adjacent basin. Our findings are consistent with en-masse lateral collapse with a volume ≥0.175 km3, resolving several ambiguities in previous reconstructions. Post-collapse eruptions produced an additional ~0.3 km3 of tephra, burying the scar and landslide deposit. The event provides a model for lateral collapse scenarios at other arc-volcanic islands showing that rapid island growth can lead to large-scale failure and that even faster rebuilding can obscure pre-existing collapse.
Lava has complex geochemical characteristics based on differences in eruption centers, eruptive events, and flow emplacement. Characterization of lava is useful for understanding the geological conditions of a volcanic region. To complement geochemical methods, rock magnetic methods are being used to analyze lava. To explore the potential uses of rock magnetic methods for lava characterization, a series of magnetic measurements were completed in lava samples from eight locations in the Ijen Volcanic Complex (IVC) in Banyuwangi, East Java, Indonesia. These locations were grouped into two eruption centers: Ijen Crater and Mount Anyar. The magnetic measurements included frequency-dependent magnetic susceptibility, thermomagnetic, anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM), and hysteresis curve analyses. These measurements were supplemented using X-ray fluorescence, petrography analyses, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS). Based on their lithology, lava samples were categorized into basalt, basaltic andesite, and basaltic trachyandesite. The dominant magnetic mineral contained in the sample was iron-rich titanomagnetite and titanium-rich titanomagnetite with a magnetic pseudo-single-domain and small amounts of superparamagnetic grain minerals in some samples. The significant difference in mass specific susceptibility (χ LF ) is caused by differences in the crystallization process. The differences in susceptibility frequency dependence (χ FD ) highlighted the differences in the magma cooling rate, demonstrated by the differences in the percentage of opaque mineral groundmass. The rock magnetic method was proven to support the geochemistry and petrography methods used to characterize lava and identify the causes of differences in lava characteristics.
The violent eruption of Krakatoa Volcano located in the Sunda Strait, Indonesia, in 1883 represents one of the deadliest eruptions in human civilization. Although lots of data have been reported, the trajectory of the subducted slab and the upper mantle structure beneath this volcano are still rather poorly known. We combined geochemical data, major, trace and rare earth elements with seismic tomograms to characterize the deep structure of Krakatoa Volcano at the junction of Sumatra and Java subduction systems. Geochemical data are in agreement with the partial melting of mantle wedge in these subduction systems, based on previous studies, and this conclusion is also supported by inferences from P-wave tomographic model. Whereas, the tomographic image of S-wave suggests that subducted slab has been intruded by hot material of mantle upwelling. The presence of both partial melting of mantle wedge and mantle upwelling in the upper mantle might be caused by the thinning of subducted slab beneath Krakatoa Volcano.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.