We review the utility of serum anticholinergic activity (SAA) as a peripheral marker of anticholinergic activity (AA) in the central nervous system (CAA). We hypothesize that the compensatory mechanisms of the cholinergic system do not contribute to SAA if their system is intact and that if central cholinergic system deteriorates alone in conditions such as Alzheimer's disease or Lewy body dementia, CAA and SAA are caused by way of hyperactivity of inflammatory system and SAA is a marker of the anticholinergic burden in CNS. Taking into account the diurnal variations in the plasma levels of corticosteroids, which are thought to affect SAA, it should be measured at noon or just afterward.
We have previously proposed a hypothesis in which we argue that anticholinergic activity (AA) appears endogenously in Alzheimer's disease (AD). Acetylcholine (ACh) controls both cognitive function and inflammation. Consequently, when the downregulation of ACh reaches critical levels, the inflammatory system is upregulated and proinflammatory cytokines with AA appear. However, factors other than downregulation of ACh can produce AA; even if ACh downregulation does not reach critical levels, AA can still appear if one of these other AA-producing factors is added. These factors can include neurocognitive disorders other than AD, such as delirium and Lewy body disease (LBD). In delirium, ACh downregulation fails to reach critical levels, but AA appears due to the use of medicines, physical illnesses or mental stress (termed ‘AA inserts'). In LBD, we speculate that AA appears endogenously, even in the absence of severe cognitive dysfunction, for 2 reasons. One reason is that patterns of ACh deterioration are different in LBD from those in AD, with synergistic actions between amyloid and α-synuclein thought to cause additional or severe symptoms that accelerate the disease course. The second reason is that AA occurs through disinhibition by reduced cortisol levels that result from severe autonomic parasympathetic dysfunction in LBD.
The brain of Alzheimer's disease (AD) patients is characterized by neurodegeneration, especially an acetylcholine (ACh) neuronal deficit with accumulation of β-amyloid protein, which leads to oxygen stress and inflammation. The active oxygen directly damages the neuron by increasing intracellular Ca2+. The inflammation is due to activation of the microglia, thereby producing cytokines which inhibit the production of brain-derived neurotrophic factor (BDNF). As the BDNF acts by neuronal protection, synaptogenesis and neurogenesis, the reduction of BDNF in the brain of AD patients worsens the symptoms of AD. On the other hand, treatment of AD patients with a cholinesterase inhibitor enhances ACh activity and inhibits inflammation. Then the expression of BDNF is restored and neuroprotection reestablished. However, there are several reports which showed controversial results concerning the relationship between BDNF and AD. We speculate that BDNF is related to some neurocognitive process and reflects neuronal activity in other neurodegenerative and neuropsychiatric disorders and that in the mild cognitive impairment stage, BDNF and choline acetyltransferase (ChAT) activities are hyperactivated because of a compensatory mechanism of AD pathology. In contrast, in the mild stage of AD, BDNF and ChAT activity are downregulated.
In this article, we review and repropose our hypothesis of the endogenous appearance of anticholinergic activity (AA) in Alzheimer's disease (AD). First, we introduce our previous articles and speculate that, because acetylcholine (ACh) regulates both cognitive function and inflammation, downregulation of this neurotransmitter causes upregulation of the inflammatory system. AA then appears endogenously with the production of cytokines and the downregulation of ACh in AD. To support our hypothesis, we present a female AD patient whose AA was considered to occur endogenously through her AD pathology. Her serum anticholinergic activity (SAA) was positive at her first visit to our memory clinic, was negative at the 1-year and 2-year follow-up visits, and had become positive again by 3 years. We speculate that the initial positive SAA was related to her AD pathology plus mental stress, and that her SAA at 3 years was related to her AD pathology only. Consequently, we believe that 2 patterns of SAA positivity (and therefore AA) exist. One occurs when the downregulation of ACh reaches a critical level, and the other occurs with the addition of some other factor such as medication, induced illness or mental stress that causes AA to affect AD pathology. Finally, we consider the pharmacotherapy of AD based on the proposed hypothesis and conclude that cholinesterase inhibitors can be used to prevent rapid disease progression, whereas N-methyl-
We previously proposed the hypothesis of endogenous anticholinergic activity (AA) in Alzheimer's disease (AD). According to this hypothesis, the downregulation of acetylcholine seen in AD is associated with upregulation/hyperactivity of N-methyl-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.