Dimethyl sulfoxide (DMSO), an amphipathic molecule, is widely used not only as a solvent for water-insoluble substances but also as a cryopreservant for various types of cells. Exposure to DMSO sometimes causes unexpected changes in cell fates. Because mammalian development and cellular differentiation are controlled epigenetically by DNA methylation and histone modifications, DMSO likely affects the epigenetic system. The effects of DMSO on transcription of three major DNA methyltransferases (Dnmts) and five well-studied histone modification enzymes were examined in mouse embryonic stem cells and embryoid bodies (EBs) by reverse transcription-polymerase chain reaction. Addition of DMSO (0.02%-1.0%) to EBs in culture induced an increase in Dnmt3a mRNA levels with increasing dosage. Increased expression of two subtypes of Dnmt3a in protein levels was confirmed by Western blotting. Southern blot analysis revealed that DMSO caused hypermethylation of two kinds of repetitive sequences in EBs. Furthermore, restriction landmark genomic scanning, by which DNA methylation status can be analyzed on thousands of loci in genic regions, revealed that DMSO affected DNA methylation status at multiple loci, inducing hypomethylation as well as hypermethylation depending on the genomic loci. In conclusion, DMSO has an impact on the epigenetic profile: upregulation of Dnmt3a expression and alteration of genomewide DNA methylation profiles with phenotypic changes in EBs.
Accumulating evidence has demonstrated the importance of alternative splicing in various physiological processes, including the development of different diseases. CDC-like kinases (CLKs) and serine-arginine protein kinases (SRPKs) are components of the splicing machinery that are crucial for exon selection. The discovery of small molecule inhibitors against these kinases is of significant value, not only to delineate the molecular mechanisms of splicing, but also to identify potential therapeutic opportunities. Here we describe a series of small molecules that inhibit CLKs and SRPKs and thereby modulate pre-mRNA splicing. Treatment with these small molecules (Cpd-1, Cpd-2, or Cpd-3) significantly reduced the levels of endogenous phosphorylated SR proteins and caused enlargement of nuclear speckles in MDA-MB-468 cells. Additionally, the compounds resulted in splicing alterations of RPS6KB1 (S6K), and subsequent depletion of S6K protein. Interestingly, the activity of compounds selective for CLKs was well correlated with the activity for modulating S6K splicing as well as growth inhibition of cancer cells. A comprehensive mRNA sequencing approach revealed that the inhibitors induced splicing alterations and protein depletion for multiple genes, including those involved in growth and survival pathways such as S6K, EGFR, EIF3D, and PARP. Fluorescence pulse-chase labeling analyses demonstrated that isoforms with premature termination codons generated after treatment with the CLK inhibitors were degraded much faster than canonical mRNAs. Taken together, these results suggest that CLK inhibitors exhibit growth suppression and apoptosis induction through splicing alterations in genes involved in growth and survival. These small molecule inhibitors may be valuable tools for elucidating the molecular machinery of splicing and for the potential development of a novel class of antitumor agents.
CDC-like kinase phosphorylation of serine/arginine-rich proteins is central to RNA splicing reactions. Yet, the genomic network of CDC-like kinase-dependent RNA processing events remains poorly defined. Here, we explore the connectivity of genomic CDC-like kinase splicing functions by applying graduated, short-exposure, pharmacological CDC-like kinase inhibition using a novel small molecule (T3) with very high potency, selectivity, and cell-based stability. Using RNA-Seq, we define CDC-like kinase-responsive alternative splicing events, the large majority of which monotonically increase or decrease with increasing CDC-like kinase inhibition. We show that distinct RNA-binding motifs are associated with T3 response in skipped exons. Unexpectedly, we observe dose-dependent conjoined gene transcription, which is associated with motif enrichment in the last and second exons of upstream and downstream partners, respectively. siRNA knockdown of CLK2-associated genes significantly increases conjoined gene formation. Collectively, our results reveal an unexpected role for CDC-like kinase in conjoined gene formation, via regulation of 3′-end processing and associated splicing factors.
Dysregulation of lysine (K)-specific demethylase 1A (LSD1), also known as KDM1A, has been implicated in the development of various cancers, including leukemia. Here, we describe the antileukemic activity and mechanism of action of T-3775440, a novel irreversible LSD1 inhibitor. Cell growth analysis of leukemia cell lines revealed that acute erythroid leukemia (AEL) and acute megakaryoblastic leukemia cells (AMKL) were highly sensitive to this compound. T-3775440 treatment enforced transdifferentiation of erythroid/megakaryocytic lineages into granulomonocytic-like lineage cells. Mechanistically, T-3775440 disrupted the interaction between LSD1 and growth factor-independent 1B (GFI1B), a transcription factor critical for the differentiation processes of erythroid and megakaryocytic lineage cells. Knockdown of LSD1 and GFI1B recapitulated T-3775440-induced transdifferentiation and cell growth suppression, highlighting the significance of LSD1-GFI1B axis inhibition with regard to the anti-AML effects of T-3775440. Moreover, T-3775440 exhibited significant antitumor efficacy in AEL and AMKL xenograft models. Our findings provide a rationale for evaluating LSD1 inhibitors as potential treatments and indicate a novel mechanism of action against AML, particularly AEL and AMKL. Mol Cancer Ther; 16(2); 273-84. ©2016 AACR.
The modulation of pre‐mRNA splicing is proposed as an attractive anti‐neoplastic strategy, especially for the cancers that exhibit aberrant pre‐mRNA splicing. Here, we discovered that T‐025 functions as an orally available and potent inhibitor of Cdc2‐like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T‐025 reduced CLK‐dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo. Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive‐associated biomarker of T‐025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T‐025 treatment. MYC activation, which altered pre‐mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti‐tumor efficacy of T‐025 in an allograft model of spontaneous, MYC‐driven breast cancer, at well‐tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC‐driven cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.