The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.allometry | metabolic scaling | mixed-power function | whole-plant respiration | simple-power function F rom the smallest seedlings to giant trees, the masses of vascular plants span 12 orders of magnitude in mass (1). The growth rates of most plants, which are generally presented in terms of net assimilation rates of CO 2 , are believed to be controlled by respiration (2, 3). Furthermore, many of the CO 2 -budget models of plant growth and carbon dynamics in terrestrial ecosystems are based on whole-plant respiration rates in relation to plant size (2, 4-7). Thus far, however, there have been few studies of wholeplant respiration over the entire range of plant size from tiny seedlings to large trees. The purpose of the present study was to quantify the allometric scaling of metabolism by directly measuring whole-plant respiration over a representative range of sizes.For the past century, the scaling of metabolic rate with body size has usually been described using an allometric equation, or simple power function, for the form (8-17)where Y is the respiratory metabolic rate (μmol s −1 ), F is a constant (μmol s −1 kg -f ), M is the body mass (kg), and f is the scaling exponent. The exponent f has been controversial, and various values have been reported based on studies of both animals and plants (15). Recently, it was suggested that f = 1 for relatively small plants, based on data for a 10 6 -fold range of body mass (16), including measurements using a whole-plant chamber (18,19). If f = 1, this means that whole-plant respiration scales isometrically with body mass, which may be reasonable in the case of herbaceous plants and small trees because nearly all of their cells, even those in the stems, should be active in respiration. However, it was suggested that f = 3/4 based originally on empirical studies of animal metabolism (8). This idea is consistent with the mechanistic models of resource distribution in vascular systems (10, 11), including the pipe model (20, 21) and models based on space-filling, hierarchical, fractal-like networks of br...
We investigated the nematicidal and insecticidal activities of the aqueous extract from Bidens pilosa var. radiata on pine-wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus alternatus) larvae and adults, the causal agent and vector of pine wilt, respectively. The aqueous extract killed the pine-wood nematode, adults, and larvae of the vector in vitro at all concentrations tested, and the effect decreased significantly with increasing extract dilution. Repellent activity was observed on the nematode and the vector adults as well, although the activity decreased with time in case of the vector. Furthermore, the aqueous extract of B. pilosa effectively promoted approximately 3.0–9.0 mm of hyphal growth in Beauveria spp., when compared with the control treatment. A minor insecticidal effect was also observed on two species of click beetle (Cryptalaus larvatus pini and Paracalais berus), which are natural predators of the Japanese pine-sawyer larvae. Pesticidal and repellent activities of the aqueous extract observed on several organisms related to pine wilt suggest that a multifactorial approach may effectively control this devastating disease.
Artificial diets have been employed for the mass-rearing of numerous insects because of their ease of use and standardized quality. An ability to store artificial diets under nonrefrigerated conditions over the long term could improve the efficacy of mass-rearing systems considerably. However, it remains largely unknown how long artificial diets can be stored at such temperatures without any adverse effects on the insects reared. In this study, we investigated yield, body size, and reproductive potential of West Indian sweet potato weevil, Euscepes postfasciatus (Fairmaire), which is a major sweet potato pest, under management using the sterile-insect technique in Japan and reared using artificial diets with different storage periods (14, 28, and 42 d) at nonrefrigerated temperatures (25 ± 1°C), and compared them with those of the control (0 d). Notably, E. postfasciatus yield and reproductive potential increased significantly with an increase in storage period (28 and 42 d). Conversely, male body size decreased significantly following feeding with artificial diet stored for 42 d, when compared with the control, while there were no significant differences in female body size between the control and all the treatments. We discuss the potential causes of such varying effects between yield and body size and conclude that E. postfasciatus artificial diet can be stored for at least 28 d without any adverse effects on weevil yield and weevil quality. To the best of our knowledge, this is the first report revealing the positive effects of long-term storage of the artificial diet on mass-reared insects.
We tested a formulation composed of a mixture of Bidens pilosa var. radiata extract (BPE) and nematode-trapping fungi for its effects on Meloidogyne incognita. In earlier evaluations of the effects of plant extracts on the hyphal growth of 5 species of nematode-trapping fungi with different capture organs (traps), the growth of all species was slightly inhibited. However, an investigation on the number of capture organs and nematode-trapping rates revealed that Arthrobotrys dactyloides formed significantly more rings and nematode traps than those of the control. An evaluation of simple mixed formulations prepared using sodium alginate showed that nematodes were captured with all formulations tested. The simple mixed formulation showed a particularly high capture rate. Furthermore, in a pot test, although the effects of a single formulation made from the fungus or plant extract were acceptable, the efficacy of the simple mixed formulation against M. incognita root-knot formation was particularly high.
Larval diet significantly affects adult traits, although less is known about how they affect reproductive traits. Males of West Indian sweet potato weevil Euscepes postfasciatus deliver a remating inhibitor along with sperm to their mates during mating, leading to a refractory period (the period before females mate again). Crossing experiments were conducted using lines reared on artificial diets, including sweet potato powder (AD) or sweet potato tubers (SP) during the larval stage, and the refractory period was examined. We also examined whether the larval diet qualitatively or quantitatively altered male ejaculate. The results showed that the refractory period was significantly longer in the SP treatment than in the AD treatment for males and females. There was no significant difference in ejaculate volume. However, the number of sperm in the testes-seminal vesicles complex was significantly higher in the SP treatment. Additionally, SDS-PAGE revealed that the ejaculate was qualitatively different depending on the larval diet, and one protein of approximately 15 kDa in size was expressed only in the SP treatments. Revealing how larval diet affects reproductive traits in adult males will help shed light on the diverse evolution of insect mating systems and reproductive behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.