Sequence analysis indicated that thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) and its mesophilic homolog, Allochromatium vinosum cytochrome c' (AVCP), closely resemble each other in a phylogenetic tree of the cytochrome c' family, with 55% sequence identity. The denaturation temperature of PHCP was 87 °C, 35 °C higher than that of AVCP. Furthermore, PHCP exhibited a larger enthalpy change value during its thermal denaturation than AVCP. While AVCP was dimeric, as observed previously, PHCP was trimeric, and this was the first observation as a cytochrome c'. Dissociation of trimeric PHCP and its protein denaturation reversibly occurred at the same time in a two-state transition manner. Therefore, PHCP is enthalpically more stable than AVCP, perhaps due to its unique trimeric form, in addition to the lower number of Gly residues in its putative α-helical regions.
Thermophilic Hydrogenophilus thermoluteolus cytochrome c′ (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c′ (AVCP), which has a homo‐dimeric structure and ligand‐binding ability. To understand the thermal stability mechanism and ligand‐binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo‐dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 Å. In the PHCP structure, six specific residues appeared to strengthen the heme‐related and subunit–subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit–subunit interactions were more severely destabilized than ones having altered heme‐related interactions. The PHCP structure further revealed a ligand‐binding channel and a penta‐coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme‐related and subunit–subunit interactions with conservation of the ligand‐binding ability.Brief SummaryWe report the X‐ray crystal structure of cytochrome c′ (PHCP) from thermophilic Hydrogenophilus thermoluteolus. The high thermal stability of PHCP was attributed to heme‐related and subunit–subunit interactions, which were confirmed by a mutagenesis study. The ligand‐binding ability of PHCP was examined by spectrophotometry. PHCP acquired the thermal stability with conservation of the ligand‐binding ability. This study furthers the understanding of the stability and function of cytochromes c.
Hyperthermophilic Aquifex aeolicus cytochrome c(555) (AA c(555)) exceptionally folds even in the apo state, unlike general cytochromes c including mesophilic Pseudomonas aeruginosa cytochrome c(551) (PA c(551)), which is structurally homologous to AA c(555) in the holo state. Here we hypothesized that the exceptional apo AA c(555) folding can be attributed to nine hydrophobic amino acid residues and proved this using a PA c(551) variant (denoted as PA-nh) carrying the nine hydrophobic residues at structurally corresponding positions. Circular dichroism experiments showed that the apo PA-nh variant became folded, unlike the wild-type apo PA c(551), and exhibited much higher stability than the wild type. Another difference between the holo forms of AA c(555) and PA c(551) is the existence of an extra helix in the former. Introduction of the amino acid residues forming the extra helix of AA c(555) into the PA-nh variant did not significantly affect its folding ability in the apo state. Therefore, the nine hydrophobic residues introduced into the apo PA-nh variant were enough to confer the folding ability. PA c(551) represents the first example of the conversion of an intrinsically unfolded apocytochrome c into an autonomously folded one, which was revealed by means of a protein engineering method without heme. Although heme is generally considered to be a trigger of apocytochrome c folding, the present results demonstrate a new heme-independent folding mechanism.
Apo-cytochomes c without heme are usually unstructured. Here we showed that apo-form of thermophilic Hydrogenophilus thermoluteolus cytochrome c' (PHCP) was a monomeric protein with high helix content. Apo-PHCP was thermally stable, possibly due to the hydrophobic residues and ion pairs. PHCP is the first example of a structured apo-cytochrome c', which will expand our view of hemoprotein structure formation.
Cytochrome c₅ of pressure-sensitive Shewanella livingstonensis (SL cytc₅) exhibits lower thermal stability than a highly homologous counterpart of pressure-tolerant Shewanella violacea. This stability difference is due to an enthalpic effect that can be attributed to the amino acid residue at position 50 (Leu or Lys). These cytc₅ proteins are appropriate materials for understanding the protein stability mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.