Malnutrition among infants and young children is a pervasive public health concern, particularly in developing countries where resources are limited. Millions of children globally suffer from malnourishment and its complications1. Despite the best efforts of governments and organizations, malnourishment persists and remains a leading cause of morbidity and mortality among children under five. Physical measurements, such as weight, height, middle-upper-arm-circumference (muac), and head circumference are commonly used to assess the nutritional status of children. However, this approach can be resource-intensive and challenging to carry out on a large scale. In this research, we are developing NutriAI, a low-cost solution that leverages small sample size classification approach to detect malnutrition by analyzing 2D images of the subjects in multiple poses. The proposed solution will not only reduce the workload of health workers but also provide a more efficient means of monitoring the nutritional status of children. On the dataset prepared as part of this research, the baseline results highlight that the modern deep learning approaches can facilitate malnutrition detection via anthropometric indicators in the presence of diversity with respect to age, gender, physical characteristics, and accessories including clothing.
A significant challenge for hospitals and medical practitioners in low- and middle-income nations is the lack of sufficient health care facilities for timely medical diagnosis of chronic and deadly diseases. Particularly, maternal and neonatal morbidity due to various non-communicable and nutrition related diseases is a serious public health issue that leads to several deaths every year. These diseases affecting either mother or child can be hospital-acquired, contracted during pregnancy or delivery, postpartum and even during child growth and development. Many of these conditions are challenging to detect at their early stages, which puts the patient at risk of developing severe conditions over time. Therefore, there is a need for early screening, detection and diagnosis, which could reduce maternal and neonatal mortality. With the advent of Artificial Intelligence (AI), digital technologies have emerged as practical assistive tools in different healthcare sectors but are still in their nascent stages when applied to maternal and neonatal health. This review article presents an in-depth examination of digital solutions proposed for maternal and neonatal healthcare in low resource settings and discusses the open problems as well as future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.