Microfluidics and microfilter devices have been developed to mimic the characteristics of the female reproductive tract, minimizing the risk of sperm damage. This study aimed to compare the use of a microfilter device versus conventional methods for sperm selection used in in vitro fertilization (IVF). For selecting spermatozoa, the pooled samples were processed in a microfilter device, swim-up and mini-Percoll gradient. Kinematic and morphometric parameters, vitality and DNA damage were analysed before and after sperm selection. After selection, 10,000 motile spermatozoa per oocyte were used in IVF drops. Embryos were assessed at three (cleavage rate) and seven (blastocyst rate) days post-IVF. Results of sperm kinematic parameters including average path velocity, velocity straight line, curvilinear velocity, linearity, lateral head displacement with the microfilter device were superior to density gradient (p < 0.05), but similar to swim-up method. Likewise, sperm DNA damage was significantly reduced using the microfilter device and swim-up method. Regarding the total sperm recovery rate post selection, results with the microfilter device (17.64%) and mini-Percoll gradient (18.27%) were higher than with swim-up method (6.52%).However, the cleavage and blastocyst rates were the lowest using the microfilter device. In conclusion, sperm selection using the microfilter device and swim-up method can improve kinematic parameters, although the mini Percoll gradient was the most efficient method for embryo production.
The objective of this study was to evaluate the time of blastulation monitored by time-lapse technology to predict in vitro viability of bovine blastocysts. This technology can be a powerful tool for bovine embryos selection with higher implantation capacity and competence. Also, in humans an early blastulation is associated with higher quality and pregnancy rate. Cumulus oocyte complexes (COCs) were matured for 20 to 22 h and then fertilized by co-incubation of COCs and spermatozoa (10,000 sperm per oocyte) for 18 h. Presumptive zygotes were placed individually in microwells, in droplets of commercial culture medium. The Primo Vision TL system (EVO+; Vitrolife) captured digital images of developing embryos every 15 minutes. The time frame from IVF to the start of blastulation (tSB) and to blastocyst development (tB) was recorded. After day 7.5, the blastocysts were in vitro culture for 48 h until day 9.5 after IVF to evaluate post hatching development. In vitro viability was evaluated at day 9.5: those with a diameter greater than 200 μm and a total cell count greater than 180 were classified as viable (value 1), while the rest were classified as non in vitro viable (value 0). The area under the ROC curve (AUC) was estimated to determine the predictive power of in vitro viability through blastulation time. In addition, binary logistic regression analysis was used to generate a mathematical model with morphokinetic variables that allow the best prediction of in vitro viability. In 13 sessions, the blastocyst production rate was 46.2% (96/208). The cut-off time to discriminate early or late blastulation was 149.8 h. The post-hatching development of the embryos with early blastulation was 63.3% (31/49), being statistically superior (p = 0.001) than the late blastulation group 14.9% (7/47). Likewise, the time of blastulation showed an accuracy of 90.8% (p < 0.001) in predicting in vitro viability of bovine blastocysts. In conclusion, the selection of blastocysts based on blastulation time (< 155 h) and blastocyst diameter measured on day 7.5 after IVF (> 180 μm) maximizes the in vitro viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.