SummaryRANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C++ and Python.Availability and implementationPre-compiled executables, source code (open-source under GNU GPL) and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/.Supplementary information Supplementary data are available at Bioinformatics online.
Worldwide, testing capacity for SARS-CoV-2 is limited and bottlenecks in the scale up of polymerase chain reaction (PCR-based testing exist. Our aim was to develop and evaluate a machine learning algorithm to diagnose COVID-19 in the inpatient setting. The algorithm was based on basic demographic and laboratory features to serve as a screening tool at hospitals where testing is scarce or unavailable. We used retrospectively collected data from the UCLA Health System in Los Angeles, California. We included all emergency room or inpatient cases receiving SARS-CoV-2 PCR testing who also had a set of ancillary laboratory features (n = 1,455) between 1 March 2020 and 24 May 2020. We tested seven machine learning models and used a combination of those models for the final diagnostic classification. In the test set (n = 392), our combined model had an area under the receiver operator curve of 0.91 (95% confidence interval 0.87-0.96). The model achieved a sensitivity of 0.93 (95% CI 0.85-0.98), specificity of 0.64 (95% CI 0.58-0.69). We found that our machine learning algorithm had excellent diagnostic metrics compared to SARS-CoV-2 PCR. This ensemble machine learning algorithm to diagnose COVID-19 has the potential to be used as a screening tool in hospital settings where PCR testing is scarce or unavailable.
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
Horizontal gene transfer is one of the most important mechanisms for microbial evolution and adaptation. It is well known that horizontal gene transfer can be either additive or replacing depending on whether the transferred gene adds itself as a new gene in the recipient genome or replaces an existing homologous gene. Yet, all existing phylogenetic techniques for the inference of horizontal gene transfer assume either that all transfers are additive or that all transfers are replacing. This limitation not only a ects the applicability and accuracy of these methods but also makes it di cult to distinguish between additive and replacing transfers. Here, we address this important problem by formalizing a phylogenetic reconciliation framework that simultaneously models both additive and replacing transfer events. Speci cally, we (1) introduce the DTRL reconciliation framework that explicitly models both additive and replacing transfer events, along with gene duplications and losses, (2) prove that the underlying computational problem is NP-hard, (3) perform the rst experimental study to assess the impact of replacing transfer events on the accuracy of the traditional DTL reconciliation model (which assumes that all transfers are additive) and demonstrate that traditional DTL reconciliation remains highly robust to the presence of replacing transfers, (4) propose a simple heuristic algorithm for DTRL reconciliation based on classifying transfer events inferred through DTL reconciliation as being replacing or additive, and (5) evaluate the classication accuracy of the heuristic under a range of evolutionary conditions. Thus, this work lays the methodological and algorithmic foundations for estimating DTRL reconciliations and distinguishing between additive and replacing transfers. An implementation of our heuristic for DTRL reconciliation is freely available open-source as part of the RANGER-DTL software package from https://compbio.engr.uconn.edu/software/ranger-dtl/.
Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.