The objective of this study was to investigate acute lung toxicity caused by Asian sand dust. Simulated Asian sand dust collected from the Tennger desert in China (CJ-2 particles) and Asian sand dust collected from the atmosphere in Japan (Tottori particles) were used. Saline suspensions of 50, 200, 800, and 3,000 µg Asian sand dust were intratracheally instilled to ICR mice. Localized accumulation of the dust particles was observed in the bronchioles and the alveoli of the lung tissues; acute inflammatory changes characterized by infiltration of macrophages and neutrophils were observed around the particles. Degenerated alveolar walls and bronchial epithelial cells, as well as a weakened positive immunolabeling for laminin, were observed to be associated with particle attachment. Positive immunolabelings for interleukin-6, tumor necrosis factor-α inducible nitric oxide synthase, and dimeric copper- and zinc-containing superoxide dismutase were observed mainly in the inflammatory cells in the lesions; these findings were not observed in the controls or in areas lacking lesions. These results suggest that Asian sand dust particles caused damage to the lung tissue through a direct physical effect. In addition, secondary released cytokines and oxidative stress generated in the lesion may be involved in the development of the acute lung toxicity.
Ultrafine particles are ubiquitous in ambient urban and indoor air from multiple sources and may contribute to adverse respiratory and cardiovascular diseases. Recently, it has been demonstrated that ultrafine particles (UFPs) are translocated from the lung into the systemic circulation. The exact pathway, however, for the translocation in the lung remains unclear. In this study, we examined the translocation pathway of intratracheally instilled C60 fullerene particles from the lung into the blood circulation in the mouse. Using light microscopy, aggregated particles of fullerene were observed in the capillary lumen in the lung and the pulmonary lymph nodes immediately after instillation. Electron microscopic analysis demonstrated an increased number of pinocytotic vesicles (caveolae) of various sizes in the type 1 alveolar epithelial cells (AEC) and endothelial cells; occasional caveolae containing some particulate substances were observed. In addition, particles of various sizes were observed throughout the structure of the air-blood barrier (ABB). These findings suggest that fullerene particles may pass the ABB by both diffusion and caveolae-mediated pinocytosis, resulting in immediate translocation into the systemic circulation.
Asian sand dust (ASD) events are associated with an increase in pulmonary morbidity and mortality. The number of ASD events has increased rapidly in the east Asian region since 2000. To study the chronic lung toxicity of ASD, saline suspensions of low doses (200 and 400 mg) and high doses (800 and 3,000 mg) of ASD were intratracheally instilled into ICR mice. Animals were sacrificed at 24 hr, 1 week, or 1, 2, or 3 months after instillation. Histopathological examination revealed that ASD induced acute inflammation at 24 hr after instillation. The acute inflammation was transient and subsided at 1 week and 1 month after instillation. At 2 and 3 months after instillation, focal infiltration of lymphocytes with accumulation of epithelioid macrophages, which is a suggestive finding of transformation to granuloma, and granuloma formation were occasionally observed. Aggregation of macrophages containing particles was observed in the pulmonary lymph nodes at 3 months after instillation in high-dose groups. Prolonged inflammatory foci (granuloma) and presence of ASD particles in pulmonary lymph nodes would have a chance to induce immunological modulation leading to adverse health effects in the exposed animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.