Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.
The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)—major players of endodermal differentiation—into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane.DOI: http://dx.doi.org/10.7554/eLife.03115.001
Seed storage proteins are synthesized on rough endoplasmic reticulum (ER) as larger precursors and are sorted to protein storage vacuoles, where they are converted into the mature forms. We report here an Arabidopsis mutant, maigo 1 (mag1), which abnormally accumulates the precursors of two major storage proteins, 12S globulin and 2S albumin, in dry seeds. Electron microscopy revealed that mag1 seeds mis-sort storage proteins by secreting them from cells. mag1 seeds have smaller protein storage vacuoles in the seeds than do wild-type seeds. The MAG1 gene encodes a homolog of the yeast (Saccharomyces cerevisiae) protein VPS29. VPS29 is a component of a retromer complex for recycling a vacuolar sorting receptor VPS10 from the pre-vacuolar compartment to the Golgi complex. Our findings suggest that MAG1/AtVPS29 protein is involved in recycling a plant receptor for the efficient sorting of seed storage proteins. The mag1 mutant exhibits a dwarf phenotype. A plant retromer complex plays a significant role in plant growth and development.
The retromer complex is responsible for retrograde transport, which is coordinated with anterograde transport in the secretory pathway including vacuolar protein sorting. Yeast VPS35 is a component of the retromer complex that is essential for recognition of specific cargo molecules. The physiological function of VPS35 has not been determined in vacuolar protein sorting in higher organisms. Arabidopsis thaliana has three VPS35 homologs designated VPS35a, VPS35b and VPS35c. We isolated four vps35 mutants (vps35a-1, vps35b-1, vps35b-2 and vps35c-1) and then generated four double mutants and one triple mutant. vps35a-1 vps35c-1 exhibited no unusual phenotypes. On the other hand, vps35b-1 vps35c-1 and the triple mutant (vps35a-1 vps35b-2 vps35c-1) exhibited severe phenotypes: dwarfism, early leaf senescence and fragmentation of protein storage vacuoles (PSVs). In addition, these mutants mis-sorted storage proteins by secreting them out of the cells and accumulated a higher level of vacuolar sorting receptor (VSR) than the wild type. VPS35 was localized in pre-vacuolar compartments (PVCs), some of which contained VSR. VPS35 was immunoprecipitated with VPS29/MAG1, another component of the retromer complex. Our findings suggest that VPS35, mainly VPS35b, is involved in sorting proteins to PSVs in seeds, possibly by recycling VSR from PVCs to the Golgi complex, and is also involved in plant growth and senescence in vegetative organs.
The number of male gametes is critical for reproductive success and varies between and within species. The evolutionary reduction of the number of pollen grains encompassing the male gametes is widespread in selfing plants. Here, we employ genome-wide association study (GWAS) to identify underlying loci and to assess the molecular signatures of selection on pollen number-associated loci in the predominantly selfing plant Arabidopsis thaliana. Regions of strong association with pollen number are enriched for signatures of selection, indicating polygenic selection. We isolate the gene REDUCED POLLEN NUMBER1 (RDP1) at the locus with the strongest association. We validate its effect using a quantitative complementation test with CRISPR/Cas9-generated null mutants in nonstandard wild accessions. In contrast to pleiotropic null mutants, only pollen numbers are significantly affected by natural allelic variants. These data support theoretical predictions that reduced investment in male gametes is advantageous in predominantly selfing species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.