The function of the translation products of six different cDNAs for Acetabularia V-ATPase proteolipid subunit (AACEVAPD1 to AACEVAPD6) was examined using a Saccharomyces cerevisiae VMA3-deficient strain that lacked its own gene for one of the proteolipid subunits of V-ATPase. Expression of the cDNAs in the strain revealed that four cDNAs from the six complemented the proton transport activity into the vacuole, visualized by fluorescence microscopy. The vacuolar-membrane-enriched fractions from the four transformants showed cross-reactivity with antibodies against the subunits a and A of S. cerevisiae V-ATPase. Two translation products from the other two cDNAs were demonstrated not to be localized in vacuolar membranes, and thus could not complement the function of the VMA3-deficient strain. As the primary structures deduced from the former four cDNAs are similar but clearly different from those of the latter two, the latter two translation products may not be able to substitute for theVMA3 gene product.
The function of the translation product of cDNA for Acetabularia vacuolar H(+)-pyrophosphatase was examined using the Saccharomyces cerevisiae VMA3-deficient strain. The open reading frame of Acetabularia H(+)-pyrophosphatase was revealed to encode 751 amino acids (721 or 751 amino acids in a previous paper). The acidification of the vacuole was observed by fluorescence microscopy when the cDNA was constructed in pYES2. Immunoblot analysis also supported the localization of the translation product in the vacuolar-membrane-enriched fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.