A BciC enzyme is related to the removal of the C13(2)-methoxycarbonyl group in biosynthesis of bacteriochlorophylls (BChls) c, d and e functioning in green sulfur bacteria, filamentous anoxygenic phototrophs and phototrophic acidobacteria. These photosynthetic bacteria have the largest and the most efficient light-harvesting antenna systems, called chlorosomes, containing unique self-aggregates of BChl c, d or e pigments, that lack the C13(2)-methoxycarbonyl group which disturbs chlorosomal self-aggregation. In this study, we characterized the BciC derived from the green sulfur bacterium Chlorobaculum tepidum, and examined the in vitro enzymatic activities of its recombinant protein. The BciC-catalyzing reactions of various substrates showed that the enzyme recognized chlorophyllide (Chlide) a and 3,8-divinyl(DV)-Chlide a as chlorin substrates to give 3-vinyl-bacteriochlorophyllide (3V-BChlide) d and DV-BChlide d, respectively. Since the BciC afforded a higher activity with Chlide a than that with DV-Chlide a and no activity with (DV-)protoChlides a (porphyrin substrates) and 3V-BChlide a (a bacteriochlorin substrate), this enzyme was effective for diverting the chlorosomal pigment biosynthetic pathway at the stage of Chlide a away from syntheses of other pigments such as BChl a and Chl a The addition of methanol to the reaction mixture did not prevent the BciC activity, and we identified this enzyme as Chlide a demethoxycarbonylase, not methylesterase.
Unique light-harvesting antennas in the green sulfur bacterium Chlorobaculum tepidum, called chlorosomes, consist of self-aggregates of bacteriochlorophyll (BChl) c. In the biosynthesis of BChl c, BciC demethoxycarbonylase removes the C13-methoxycarbonyl group to facilitate the self-aggregation of BChl c. We previously reported the in vitro BciC-enzymatic reactions and discussed the function of this enzyme in the biosynthesis of BChl c. This study aims to examine the substrate specificity of BciC in detail using several semi-synthetic (bacterio)chlorophyll derivatives. The results indicate that the substrate specificity of BciC is measurably affected by structural changes on the A/B rings including the bacteriochlorin π-systems. Moreover, BciC showed its activity on a Zn-chelated chlorophyll derivative. On the contrary, BciC recognized structural modifications on the D/E rings, including porphyrin pigments, which resulted in the significant decrease in the enzymatic activity. The utilization of BciC provides mild conditions that may be useful for the in vitro preparation of various chemically (un)stable chlorophyllous pigments.
SummaryPhotosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3 1 position that produces a chiral center with R-or S-stereochemistry and the C3 1 -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchFinactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Q y absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As transcriptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription.
Various chlorophyll and bacteriochlorophyll derivatives possessing a magnesium or zinc atom at the central position and a free carboxylic acid group at the C17[Formula: see text]-position, also known as (bacterio)chlorophyllides, were synthesized through a combination of organic synthesis techniques and enzymatic steps. The semi-synthetic (bacterio)chlorophyllides were purified and analyzed using reversed-phase high-performance liquid chromatography with UV-vis spectroscopy and mass spectrometry. These free propionic acid-containing chlorophyllous pigments can be useful research materials for the study of (bacterio)chlorophyll metabolisms.
Photosynthetically active chlorophyll molecules are biosynthesized from 5-aminolevulinic acid through protoporphyrin IX. The multistep enzymatic transformations were well investigated, but their pathways and reaction mechanisms have not been fully elucidated in the late stages. The biosynthetic pathways of (bacterio)chlorophylls from protoporphyrin IX are here described from a chemical viewpoint, especially focusing on the reduction processes of the C=C double to C–C single bonds. The regioselective and stereoselective trans-hydrogenation is performed in the enzymatic reductions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.