The recent outbreak of the COVID-19 affected millions of people worldwide, yet the rate of infected people is increasing. In order to cope with the global pandemic situation and prevent the spread of the virus, various unprecedented precaution measures are adopted by different countries. One of the crucial practices to prevent the spread of viral infection is social distancing. This paper intends to present a social distance framework based on deep learning architecture as a precautionary step that helps to maintain, monitor, manage, and reduce the physical interaction between individuals in a real-time top view environment. We used Faster-RCNN for human detection in the images. As the human's appearance significantly varies in a top perspective; therefore, the architecture is trained on the top view human data set. Moreover, taking advantage of transfer learning, a new trained layer is fused with a pre-trained architecture. After detection, the pair-wise distance between peoples is estimated in an image using Euclidean distance. The detected bounding box's information is utilized to measure the central point of an individual detected bounding box. A violation threshold is defined that uses distance to pixel information and determines whether two people violate social distance or not. Experiments are conducted using various test images; results demonstrate that the framework effectively monitors the social distance between peoples. The transfer learning technique enhances the overall performance of the framework by achieving an accuracy of 96% with a False Positive Rate of 0.6%.
This paper analyzes the ability of a neural network model to predict the outcome of NFL games. This model uses only readily available statistics, such as passing yards, rushing yards, fumbles lost, and scoring. A key component of this model is the use of statistical differentials to compare teams. For example, the offensive passing yards gained by one team are compared to the defensive passing yards allowed by an opposing team to create a data set of expected values for a given matchup. By using principal component analysis and derivative based analysis, we determined which statistics influence our model the most. We assessed the performance of the model by comparing its performance to that of published prediction algorithms and the Las Vegas oddsmakers over multiple seasons. Two novel aspects of this work include the use of multiple committees of machines for prediction and the use of our model to simulate virtual round-robin tournaments to establish an objective ranking of the teams.
In recent years, overhead view based person detection gained importance, due to handling occlusion problem and providing better coverage in scene, as compared to frontal view. In computer vision, overhead based person detection holds significant importance in many applications including person detection, person counting, person tracking, behavior analysis and occlusion free surveillance system, etc. This paper aims to provide a comprehensive survey on recent development and challenges related to person detection from top view. To the best of our knowledge, it is the first attempt which provides the survey of different overhead person detection techniques. This paper provides an overview of state of the art overhead based person detection methods and guidelines to choose the appropriate method in real life applications. The techniques are divided into two main categories: the blob-based techniques and the feature-based techniques. Various detection factors such as field of view, region of interest, color space, image resolution are also examined along with a variety of top view datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.