Bifacial rooftop photovoltaic panels appear to be an excellent means of power generation in this era of urbanization, especially for land-limited countries like Bangladesh. This paper presents a software-based approach to design and simulate a bifacial solar-panel-based energy model on the rooftop of the North Hall of Residence of the Islamic University of Technology, Gazipur. This vertically mounted model investigates the feasibility and applicability of such an energy model in a university residence, situated in a load-shedding-prone area. Hence, three prominent software platforms, namely PVSOL, PVsyst and System Advisor Model (SAM), are brought into action and rigorous simulations are performed for three different orientations; promising outcomes are observed in terms of annual energy yield, bifacial gain (BG) and consumption coverage of the grid and PV model. The annual energy demand of the North Hall is ~444 733.5 kWh. The three orientations can generate annually 92 508.62, 94 643.48 and 86 758.94 kWh, respectively. Hence, it is evident that the proposed orientations can supply almost 19–21% of the site’s annual demand. Monthly BG analysis shows an overall increase in energy gain of 13%, 15.6% and 6% for Orientation-1, Orientation-2 and Orientation-3, respectively. A rigorous comparative analysis and deviation analysis among the software results has been accomplished to gain more insight into the feasibility of the proposed system. Thus, we have focused on a detailed software-based estimation of energy production for different orientations of the PV panels, considering several factors, which will provide prior knowledge and assessment before going for hardware implementation in the future.
This paper proposes a design and software simulation of monofacial solar photovoltaic panel based energy harvesting system for university residence. As the site of the proposed system, the rooftop of North Hall of Residence of the Islamic University of Technology (IUT) is considered. The 3D model of the system is demonstrated by utilizing PVSOL software. The monthly energy production is obtained by performing the simulation in three software named PVSOL, PVsyst, and System Advisor Model (SAM). However, the monthly consumption of the residence is tabulated and graphical presentation is depicted. Hence, the energy flow diagram is illustrated showing that the proposed PV system can contribute 18.4% in the annual demand of the site. The performance of each of the software is evaluated and deviation analysis is performed so that more insight can be achieved in terms of harvesting solar energy. Hence, a cost-effective and self-reliant solar energy model for the rooftop of a university residence is proposed by utilizing monofacial solar PV panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.