The present study was conducted in Delanta (Ethiopia) to examine the use of medicinal plants and investigate the impacts of the 1984/85 resettlement program on the local people's knowledge on herbal medicine and its uses. The research was conducted with 72 informants in six study sites through semistructured interviews, group discussion, and market survey. In this study, 133 species belonging to 116 genera and 57 families were documented. These plants were mentioned for uses in the treatment of about 76 human and livestock ailments. The family Asteraceae was represented by the highest number with 14 species. Herbs accounted for 52.6% of the total species and leaves (32.6%) were the most frequently used parts. The analysis showed that the resettlement program has both positive and negative impacts on nature rehabilitation and local knowledge along with many human induced threats. Most of the plant knowledge is held by traditional healers and permanent residents. The people's preference for some medicinal plants gave indications of continuity of the ethnomedicinal information among the inhabitants. The findings inform that efforts need to be directed to in situ conservation in two of the plant community types which could protect a good proportion (about 50%) of the medicinal plant species.
The primary objective of this study was to examine the status of woody species composition and diversity along the Walga River of Wonchi, Southwestern Ethiopia. Fifty quadrats of 10 m x 50 m were laid at 500 m interval through systematic sampling method along the river line. Vegetation height (≥2.5 m) and DBH (≥2.5 cm) of only tree species were measured and altitude, ecological disturbances such as, grazing intensity and human impacts were included as main environmental variables at each of the sampled plots. The data was analyzed using different R statistical packages. Ninety-nine woody vascular plant species belonged to 81 genera and 45 familieswere recorded in Walga riparian vegetation. Only 10% of specieswere endemic to the Flora area. Asteraceae and Fabaceae had the highest number of species. Majority of the species (52.5%) were shrubs. Four major plant community types were identified: Euclea divinorum-Maytenus arbutifolia (1), Pterolobium stellatum- Calpurnia aurea (2), Brucea antidysenterica-Prunus africana (3), Erica arborea-Hagenia abyssinica (4). Species richness, true diversity and importance values were highestin community type 2(the lowest altitude ranges between 1976–2212 m a.s.l.) while evenness was highestin community type 3(mid altitude ranges between 2359–2676 m a.s.l.). Both community typeswere comprised of 56% of all recorded species and all endemic taxa except two. The highest percentage of species in lower frequency classes indicates a higher degree of floristic heterogeneity. There was a strong negative correlation (r = -0.65, p<0.001) between species richness and altitude with 42% of the variation in species richness per plot being explained by altitude. Our findings suggest that human disturbances and excessive livestock grazing are the main threats in community types1 and 2. We conclude that identifying major plant community types and underlying environmental conditions may help to manage and conserve forest resources in the area.
Dry evergreen montane forests in Ethiopia are severely threatened. The status of species composition and structure of forest vegetation are important indicators to understand the trends of threats on local plant communities. In the present study, we examined the floristic composition and structure of the Kibate Forest, Wonchi Highland, Ethiopia along environmental gradients. Sixty-six (30 m × 30 m) plots were established every 100 m interval along altitudinal gradients (2811‒3073 m a.s.l.) in five transect lines for vegetation and environmental data collection. In total, 125 vascular plant species belonging to 104 genera and 52 families were identified. Eighteen species (14%) were endemic to Ethiopia and Eritrea. The two most dominant families, Asteraceae (29 species) and Lamiaceae (eight species) accounted for 30% of the total number of species. The highest number of species (54%) was herbs. Four major community types (viz., Olinia rochetiana-Myrsine melanophloeos, Ilex mitis-Galiniera saxifraga, Erica arborea-Protea gaguedi, and Hagenia abyssinica-Juniperus procera) were identified. The highest species richness, evenness, diversity, and importance value index were in community types 2 and 4. About 82% of the species and all endemic taxa except five were recorded in these two community types. The most dominant woody species were O. rochetiana, E. arborea, Olea europaea subsp. cuspidata, Myrica salicifolia, I. mitis var. mitis, and H. abyssinica with different patterns of population structure. The results show that there was a weak correlation between species richness and altitude. Our findings confirm that environmental variables both with interactions (such as altitude) and without interactions (such as livestock grazing) significantly (p < 0.05) affect species richness. Anthropogenic activities and overgrazing by livestock appear to be the main threat in community types 2 and 3. Urgent management practices and conservation measures such as prohibiting forest clearing and overgrazing and planting indigenous trees through community participation should be considered in community types that are rich in endemic species but are highly threatened.
Forests play an important role in the global carbon (C) balance, but their biomass has decreased globally mainly because of deforestation and a reduction in forest cover. However, little is known about the C stock of tree biomass related to environmental factors in the remnant forest patches. Thus, the present study aimed at assessing the status of C stocks of tree biomass using an allometric equation in Kibate Forest (Ethiopia). Sixty–six plots (30×30 m) were laid out at 100 m interval distance along the altitudinal gradients in five transects. The results revealed that the highest C stocks (67.4%) per species were contributed by Juniperus procera, Ilex mitis var. mitis, Nuxia congesta, and Olea europaea subsp. cuspidata. The mean total tree biomass was 91.9 ± 10.01 Mg ha−1. The mean total C stock was 45.9 ± 5.17 Mg ha−1, out of which 38.3 ± 4.31 and 7.7 ± 0.91 Mg ha−1 were stored in above- and belowground C pools, respectively. Anthropogenic factors were negatively associated with the C-stock distribution in the study area. Thus, the status of the C stock of tree biomass related to anthropogenic factors indicates that sustainable forest management practice is needed in the study area to conserve biodiversity and mitigate climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.