A notion of rational Baker-Akhiezer (BA) function related to a configuration of hyperplanes in C n is introduced. It is proved that BA function exists only for very special configurations (locus configurations), which satisfy certain overdetermined algebraic system. The BA functions satisfy some algebraically integrable Schrödinger equations, so any locus configuration determines such an equation. Some results towards the classification of all locus configurations are presented. This theory is applied to the famous Hadamard's problem of description of all hyperbolic equations satisfying Huygens' Principle. We show that in a certain class all such equations are related to locus configurations and the corresponding fundamental solutions can be constructed explicitly from the BA functions.
A one-parameter deformation of Calogero–Moser quantum problem is introduced. It is shown that corresponding Schrödinger operator is integrable for any value of the parameter and algebraically integrable in case of integer value.
We consider those Gaussian Unitary Ensembles where the eigenvalues have prescribed multiplicities, and obtain joint probability density for the eigenvalues. In the simplest case where there is only one multiple eigenvalue t , this leads to orthogonal polynomials with the Hermite weight perturbed by a factor that has a multiple zero at t. We show through a pair of ladder operators, that the diagonal recurrence coefficients satisfy a particular Painlevé IV equation for any real multiplicity. If the multiplicity is even they are expressed in terms of the generalized Hermite polynomials, with t as the independent variable. † ychen@ic.ac.uk
We consider a class of solutions of the WDVV equation related to the special systems of covectors (called ∨-systems) and show that the corresponding logarithmic Frobenius structures can be naturally restricted to any intersection of the corresponding hyperplanes. For the Coxeter arrangements the corresponding structures are shown to be almost dual in Dubrovin's sense to the Frobenius structures on the strata in the discriminants discussed by Strachan. For the classical Coxeter root systems this leads to the families of ∨-systems from the earlier work by Chalykh and Veselov. For the exceptional Coxeter root systems we give the complete list of the corresponding ∨-systems. We present also some new families of ∨-systems, which can not be obtained in such a way from the Coxeter root systems.
We consider a complex version of the ∨-systems, which appeared in the theory of the WDVV equation. We show that the class of these systems is closed under the natural operations of restriction and taking the subsystems and study a special class of the ∨-systems related to generalized root systems and basic classical Lie superalgebras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.