Inspired by the recent social movement of #MeToo, we are building a chatbot to assist survivors of sexual harassment cases (designed for the city of Maastricht but can easily be extended). The motivation behind this work is twofold: properly assist survivors of such events by directing them to appropriate institutions that can offer them help and increase the incident documentation so as to gather more data about harassment cases which are currently under reported. We break down the problem into three data science/machine learning components: harassment type identification (treated as a classification problem), spatiotemporal information extraction (treated as Named Entity Recognition problem) and dialogue with the users (treated as a slot-filling based chatbot). We are able to achieve a success rate of more than 98% for the identification of a harassment-or-not case and around 80% for the specific type harassement identification. Locations and dates are identified with more than 90% accuracy and time occurences prove more challenging with almost 80%. Finally, initial validation of the chatbot shows great potential for the further development and deployment of such a beneficial for the whole society tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.