The central regulator of the Wnt/β-catenin pathway is the Axin/APC/GSK3β destruction complex (DC), which in unstimulated conditions targets cytoplasmic β-catenin for degradation. How Wnt activation inhibits the DC to permit β-catenin-dependent signaling remains controversial, in part because the DC and its regulation have never been observed in vivo. Using Bimolecular Fluorescence Complementation (BiFC) methods, we have now analyzed the activity of the DC under near-physiological conditions in Drosophila. By focusing on well-established patterns of Wnt/Wg signaling in the developing Drosophila wing, we have defined the sequence of events by which activated Wnt receptors induce a conformational change within the DC, resulting in modified Axin-GSK3β interactions that prevent β-catenin degradation. Surprisingly, the nucleus is surrounded by active DCs, which principally control β-catenin's degradation and thereby nuclear access. These DCs are inactivated and removed upon Wnt signal transduction. These results suggest a novel mechanistic model for dynamic Wnt signaling transduction in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.