52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
Most theories of visual search emphasize issues of limited versus unlimited capacity and serial versus parallel processing. In the present article, we suggest a broader framework based on two principles, one empirical and one theoretical. The empirical principle is to focus on conditions at the intersection of visual search and the simple detection and discrimination paradigms of spatial vision. Such simple search conditions avoid artifacts and phenomena specific to more complex stimuli and tasks. The theoretical principle is to focus on the distinction between high and low threshold theory. While high threshold theory is largely discredited for simple detection and discrimination, it persists in the search literature. Furthermore, a low threshold theory such as signal detection theory can account for some of the phenomena attributed to limited capacity or serial processing. In the body of this article, we compare the predictions of high threshold theory and three versions of signal detection theory to the observed effects of manipulating set size, discriminability, number of targets, response bias, external noise, and distractor heterogeneity. For almost all cases, the results are inconsistent with high threshold theory and are consistent with all three versions of signal detection theory. In the Discussion, these simple theories are generalized to a larger domain that includes search asymmetry, multidimensional judgements including conjunction search, response time, search with multiple eye fixations and more general stimulus conditions. We conclude that low threshold theories can account for simple visual search without invoking mechanisms such as limited capacity or serial processing.
Creative use of new mobile and wearable health information and sensing technologies (mHealth) has the potential to reduce the cost of health care and improve well-being in numerous ways. These applications are being developed in a variety of domains, but rigorous research is needed to examine the potential, as well as the challenges, of utilizing mobile technologies to improve health outcomes. Currently, evidence is sparse for the efficacy of mHealth. Although these technologies may be appealing and seemingly innocuous, research is needed to assess when, where, and for whom mHealth devices, apps, and systems are efficacious. In order to outline an approach to evidence generation in the field of mHealth that would ensure research is conducted on a rigorous empirical and theoretic foundation, on August 16, 2011, researchers gathered for the mHealth Evidence Workshop at NIH. The current paper presents the results of the workshop. Although the discussions at the meeting were cross-cutting, the areas covered can be categorized broadly into three areas: (1) evaluating assessments; (2) evaluating interventions; and, (3) reshaping evidence generation using mHealth. This paper brings these concepts together to describe current evaluation standards, future possibilities and set a grand goal for the emerging field of mHealth research.
Background Timely detection of early cognitive impairment is difficult. Measures taken in the clinic reflect a single snapshot of performance that may be confounded by the increased variability typical in aging and disease. We evaluated the use of continuous, long-term and unobtrusive in-home monitoring to assess neurological function in healthy and cognitively impaired elders. Methods Fourteen older adults 65 years and older living independently in the community were monitored in their homes using an unobtrusive sensor system. Measures of walking speed and amount of activity in the home were obtained. Wavelet analysis was used to examine variance in activity at multiple timescales. Results More than 108,000 person-hours of continuous activity data were collected over periods as long as 418 days (mean 315 ± 82 days). The coefficient of variation in the median walking speed was twice as high in the MCI group (0.147 ± 0.074) as compared to the healthy group (0.079 ± 0.027; t11 = 2.266, p<0.03). Furthermore, the 24-hour wavelet variance was greater in the MCI group (MCI: 4.07 ± 0.14, Healthy elderly: 3.79± 0.23; F = 7.58, p=<0.008), indicating that the day-to-day pattern of activity of subjects in the MCI group was more variable than that of the cognitively healthy controls. Conclusions The results not only demonstrate the feasibility of these methods, but also suggest clear potential advantages to this new methodology. This approach may provide an improved means of detecting the earliest transition to MCI compared to conventional episodic testing in a clinic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.