SummaryTomography in a focused ion beam (FIB) scanning electron microscope (SEM) is a powerful method for the characterization of three-dimensional micro-and nanostructures. Although this technique can be routinely applied to conducting materials, FIB-SEM tomography of many insulators, including biological, geological and ceramic samples, is often more difficult because of charging effects that disturb the serial sectioning using the ion beam or the imaging using the electron beam. Here, we show that automatic tomography of biological and geological samples can be achieved by serial sectioning with a focused ion beam and block-face imaging using low-kV backscattered electrons. In addition, a new ion milling geometry is used that reduces the effects of intensity gradients that are inherent in conventional geometry used for FIB-SEM tomography.
Break on through: Steaming‐induced mesopores of individual ZSM‐5 crystals were studied by a combination of focused ion beam (FIB) and scanning electron microscopy (SEM) tomography (see picture). In this manner, quantitative insight into the width, length, morphology, and distribution of mesopores generated within zeolite crystals has been obtained.
In recent years, electron tomography has improved our three-dimensional (3D) insight in the structural architecture of cells and organelles. For studies that involve the 3D imaging of stained sections, manual annotation of tomographic data has been an important method to help understand the overall 3D morphology of cellular compartments. Here, we postulate that template matching can provide a tool for more objective annotation and contouring of cellular structures. Also, this technique can extract information hitherto unharvested in tomographic studies. To evaluate the performance of template matching on tomograms of stained sections, we generated several templates representing a piece of microtubule or patches of membranes of diVerent staining-thicknesses. These templates were matched to tomograms of stained electron microscopy sections. Both microtubules and ER-Golgi membranes could be detected using this method. By matching cuboids of diVerent thicknesses, we were able to distinguish between coated and non-coated endosomal membrane-domains. Finally, heterogeneity in staining-thickness of endosomes could be observed. Template matching can be a useful addition to existing annotation-methods, and provide additional insights in cellular architecture.
SummaryAtherogenesis is a pathological condition in which changes in the ultrastructure and in the localization of proteins occur within the vasculature during all stages of the disease. To gain insight in those changes, high-resolution imaging is necessary. Some of these changes will only be present in a small number of cells, positioned in a 'sea' of non-affected cells. To localize this relatively small number of cells, there is a need to first navigate through a large area of the sample and subsequently zoom in onto the area of interest. This approach enables the study of specific cells within their in vivo environment and enables the study of (possible) interactions of these cells with their surrounding cells/environment. The study of a sample in a correlative way using light and electron microscopy is a promising approach to achieve this; however, it is very laborious and additional ultrastructural techniques might be very valuable to find the places of interest.In this report we show that the focused ion beam-scanning electron microscope is a powerful tool to study biological specimens in a correlative way. With this microscope one can scan for the area of interest at low magnification, in this case the atherosclerotic plaque, and subsequently zoom in, for further analysis on an ultrastructural level, rendering valuable and detailed two-and three-dimensional information of, in this case, the endothelial cells and the vessel wall. Moreover, in combination with pre-embedment labelling of surface exposed antigens, the method allows insight into the 3D distribution of these markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.