To preserve the structural integrity of power semiconductor devices, ensuring a reliable connection between wide-bandgap (WBG) chips and their substrates at temperatures above 200 °C is crucial. Therefore, easily processable chip-attach materials with high bonding strengths at high temperatures should be developed. Herein, we determined the optimal pre-heating conditions of chip-attach materials to achieve highly reliable WBG semiconductor devices. Sintering with silver-coated copper (Cu@Ag) particle paste was investigated as a model system for chip attachment in electric power devices. After printing the paste onto a direct-bonded ceramic substrate and placing the Si chip on the paste, the pre-heating process was conducted at 50 and 70 °C for different periods of time. Finally, the samples were sintered at a pressure of 9 MPa at 250 °C in an N2 atmosphere for 1 h. The quality of the obtained Cu@Ag joints significantly varied depending on the pre-heating temperature and time. When Cu@Ag joints were pre-heated at 50 °C, more reliable and reproducible bonding was achieved than at 70 °C. In particular, high-quality sintered joints were obtained with a pre-heating time of 4 min. However, after excessive pre-heating time, cracks and voids were generated impacting negatively the performance of the sintered joints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.