Significance We illustrate the similarity and difference in particulate matter (PM) formation between Beijing and other world regions. The periodic cycle of PM events in Beijing is regulated by meteorological conditions. While the particle chemical compositions in Beijing are similar to those commonly measured worldwide, efficient nucleation and growth over an extended period in Beijing are distinctive from the aerosol formation typically observed in other global areas. Gaseous emissions of volatile organic compounds and nitrogen oxides from urban transportation and sulfur dioxide from regional industry are responsible for large secondary PM formation, while primary emissions and regional transport of PM are insignificant. Reductions in emissions of the aerosol precursor gases from transportation and industry are essential to mediate severe haze pollution in China.
Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO 2 by NO 2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH 3 neutralization or under cloud conditions. Under polluted environments, this SO 2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH 3 and NO 2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.sulfate aerosol | severe haze | pollution | human health | climate
No abstract
Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.black carbon | absorption | air quality | radiative forcing | climate B lack carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality and climate (1-4). As a key short-lived climate forcer, the magnitude of BC direct radiative forcing (DRF) is dependent on the mixing state, i.e., whether particles are externally or internally mixed with other aerosol types (5, 6), and atmospheric aging by coating with secondary aerosol constituents (such as organics and sulfate) enhances the mass absorption cross-section (MAC) (5-9). Previous laboratory studies conducted under controlled experimental conditions yielded a broad range of MAC enhancements from 1.05 to 3.50, varying with the diameter, morphology, and coating of BC particles (7-15). On the other hand, a field measurement indicated a negligible absorption enhancement of ambient BC particles under a variable mixing state (16). In addition, BC aging and absorption enhancement also strongly impact visibility and atmospheric stability.Few direct measurements have been conducted to capture aging and quantify the related absorption variation of BC particles under ambient conditions. In particular, atmospheric measurements at fixed sites are affected by transport, local emissions, and chemistry, and quantification of the evolution in the BC properties (such as morphology, mixing state, and absorption and scattering coefficients) during aging involves complex decoupli...
Due to the rapid development of low-cost air-quality sensors, a rigorous scientific evaluation has not been conducted for many available sensors. We evaluated three Plantower PMS A003 sensors when exposed to eight particulate matter (PM) sources (i.e., incense, oleic acid, NaCl, talcum powder, cooking emissions, and monodispersed polystyrene latex spheres under controlled laboratory conditions and also residential air and ambient outdoor air in Baltimore, MD). The PM2.5 sensors exhibited a high degree of precision and R 2 values greater than 0.86 for all sources, but the accuracy ranged from 13 to >90% compared with reference instruments. The sensors were most accurate for PM with diameters below 1 μm, and they poorly measured PM in the 2.5–5 μm range. The accuracy of the sensors was dependent on relative humidity (RH), with decreases in accuracy at RH > 50%. The sensors were able to produce meaningful data at low and high temperatures and when in motion, as it would be if utilized for outdoor or personal monitoring applications. It was most accurate in environments with polydispersed particle sources and may not be useful in specialized environments or experiments with narrow distributions of PM or aerosols with a large proportion of coarse PM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.