Recent developments in machine learning implemented dimensionality reduction and clustering tools to classify the cellular composition of patient-derived tissue in multi-dimensional, single cell studies. Current approaches, however, require prior knowledge of either categorical clinical outcomes or cell type identities. These algorithms are not well suited for application in tumor biology, where clinical outcomes can be continuous and censored and cell identities may be novel and plastic. Risk Assessment Population IDentification (RAPID) is an unsupervised, machine learning algorithm that identifies single cell phenotypes and assesses clinical risk stratification as a continuous variable. Single cell mass cytometry evaluated 34 different phospho-proteins, transcription factors, and cell identity proteins in tumor tissue resected from patients bearing IDH wild-type glioblastomas. RAPID identified and characterized multiple biologically distinct tumor cell subsets that independently and continuously stratified patient outcome. RAPID is broadly applicable for single cell studies where atypical cancer and immune cells may drive disease biology and treatment responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.