There is evidence related to the sex dichotomy in obesity in a variety of areas including adipocyte function, sex hormone effects, genetics, and metabolic inflammation leading to critical differences in adipose tissue biology. The sex and gender difference in adipose tissue is a factor that should be considered when studying an individuals' risk for obesity and metabolic dysfunction. This understanding is important for strategizing treatment and prevention measures.
Obesity-induced chronic inflammation is associated with metabolic disease. Results from mouse models utilizing a high-fat diet (HFD) have indicated that an increase in activated macrophages, including CD11c adipose tissue macrophages (ATMs), contributes to insulin resistance. Obesity primes myeloid cell production from hematopoietic stem cells (HSCs) and Toll-like receptor 4 (TLR4), and the downstream TIR domain-containing adapter protein-inducing interferon-β (TRIF)- and MyD88-mediated pathways regulate production of similar myeloid cells after lipopolysaccharide stimulation. However, the role of these pathways in HFD-induced myelopoiesis is unknown. We hypothesized that saturated fatty acids and HFD alter myelopoiesis by activating TLR4 pathways in HSCs, differentially producing pro-inflammatory CD11c myeloid cells that contribute to obesity-induced metabolic disease. Results from reciprocal bone marrow transplants (BMTs) with and WT mice indicated that TLR4 is required for HFD-induced myelopoiesis and production of CD11c ATMs. Experiments with homozygous knockouts of (encoding a suppressor of MyD88 inactivation) and in competitive BMTs revealed that MyD88 is required for HFD expansion of granulocyte macrophage progenitors and that is required for pregranulocyte macrophage progenitor expansion. A comparison of WT,, , and mice on HFD demonstrated that TLR4 plays a role in the production of CD11c ATMs, and both and mice produced fewer ATMs than WT mice. Moreover, HFD-induced TLR4 activation inhibited macrophage proliferation, leading to greater accumulation of recruited CD11c ATMs. Our results indicate that HFD potentiates TLR4 and both its MyD88- and TRIF-mediated downstream pathways within progenitors and adipose tissue and leads to macrophage polarization.
With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of this on offspring. The purpose of this study is to investigate the programming effects of maternal obesity during preconception and the preconception/gestational period on adiposity and adipose tissue inflammation in offspring using an animal model. Adult female C57Bl/6J mice were assigned either normal diet, high fat diet (HFD) prior to pregnancy, or HFD prior to and through pregnancy. Some offspring were maintained on normal diet while others started HFD later in life. Offspring were assessed for body composition and metabolic responses. Lipid storing tissues were evaluated for expansion and inflammation. Male offspring from the preconception group had the greatest weight gain, most subcutaneous adipose tissue, and largest liver mass when introduced to postnatal HFD. Male offspring of the preconception/gestation group had worsened glucose tolerance and an increase in resident (CD11c−) adipose tissue macrophages (ATMs) when exposed to postnatal HFD. Female offspring had no significant difference in any parameter between the diet treatment groups. In conclusion, this study demonstrates that prenatal and pregnancy windows have independent programming effects on offspring. Preconception exposure affects body composition and adiposity while gestation exposure affects metabolism and tissue immune cell phenotypes.
Metabolic and non-metabolic complications due to obesity are becoming more prevalent, yet our understanding of the mechanisms driving these is not. This is due to individual risk factor variability making it difficult to predict disease outcomes such as diabetes and insulin resistance. Gender is a critical factor in obesity outcomes with women having more adiposity but reduced metabolic complications compared to men. The role of immune system activation during obesity is an emerging field that links adiposity to metabolic syndrome. Furthermore, evidence from animal models suggests that sex differences exist in immune responses and, therefore, could be a possible mechanism leading to sex differences in metabolic disease. While there is still much to learn in the area of sex-differences research, this chapter will review the current knowledge and literature detailing the role of sex and sex hormones on adiposity and metabolically induced inflammation in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.