Nanotechnologies reinvented the utilities of various substances in healthcare. Copper in its native form (copper ion) has been well studied for its antimicrobial and anti-inflammatory activities. Copper in its nano form could have better biological profile and finds many applications in healthcare. There were reports on synthesis of copper nanoparticles by physical and chemical methods and their biological activities, although these methods have limitations. Biosynthesis of nanoparticles using microbes is an ecofriendly approach helping in the synthesis of biocompatible and stable nanoparticles. With this background in mind, the present study was designed to synthesise copper nanoparticles by Pseudomonas aeruginosa and testing their efficacy in enhancing the pace of wound healing. Culture supernatant was used to synthesise copper nanoparticles. Optimum conditions were selected to maximise the biosynthesis of nanoparticles. Biosynthesised copper nanoparticles (BNCPs) were characterised by Malvern zeta sizer and scanning electron microscopy. Average particle size, polydispersivity index and zeta potential of BNCPs were found to be 110.9 nm, 0.312 and (-) 18.3 mV, respectively. BNCPs was evaluated for its wound healing activity by excision wound model in rat. The pace of wound healing was enhanced by BNCPs compared with copper in native form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.