A callus induction and in vitro plantlet regeneration system for the endangered state flower of Uttaranchal (Saussurea obvallata) was optimized by studying the influence of explant type (root, hypocotyl, cotyledon and leaf), age and different concentrations of plant growth regulators. Explants from 10 to 15-day-old seedlings showed maximum callus induction. Callus formation and shoot differentiation was initiated on Murashige-Skoog (MS) medium containing 6-benzyladenine (BA) and alpha-naphthalene acetic acid (NAA) in all explant types. The best results were obtained using leaf explants: 100% callusing was achieved in MS medium supplemented with 2.5 microM BA and 1.0 microM NAA, and 100% differentiation along with a multiplication rate of 12 shoots per explant with a combination of 5.0 microM BA and 1.0 microM NAA. However, the results reflected the existence of high inter-explant variability in response to growth regulators. In vitro rooting of shoots was achieved at an efficiency of 100% in one-half strength MS medium supplemented with 2.5 microM indole-3-butyric acid. Application of this protocol has potential for mass multiplication of the target species in a limited time period.
Abstract. Cities are experiencing increased pressure on social, economic, and environmental sectors due to the rapid urbanisation and increasing risk owing to climate change affecting the urban environment. Solutions such as green roofs are often discussed in the context of smart and sustainable cities as they present a multi-functional and solution-oriented approach to address these challenges. Green roofs become extremely relevant in the context of highly urbanised and compact cities where impervious surfaces are abundant. Therefore, in this paper, we analyse the potential of green roofs at a city scale with the help of parameters such as area and slope of the roof and structure of the building. We also identify the priority zones based on environmental and socio-economic parameters. The study is carried out in the city of Liege, Belgium. The results suggest that around 20% (350 hectares) of the total buildings in the city have the potential for developing green roofs. Moreover, the potential of green roofs is quite significant in terms of roof area in the priority zone. Due to significant socio-economic deprivation in high priority zones, implementation of green roofs might not be affordable. Buildings with larger roof sizes are mostly owned by companies or commercial establishments, thus, making larger roofs more relevant for retrofitting green roof. Thus, our approach can act as a preliminary decision-making tool for urban planners to analyse the potential of green roofs and prioritize them in deprived areas.
Green roofs (GRs) are a sustainable alternative to conventional roofs that provide multiple ecosystem services. Integrating GRs into urban areas is highly relevant considering the rapidly increasing built-up in cities. Therefore, this paper systematically and comprehensively reviews the recent literature from 2011 to 2019 on GRs to identify the challenges and perspectives related to the urban integration of GRs. The review suggests that the effectiveness of GRs in delivering ecosystem services is largely dependent on context-specific parameters such as weather conditions and existing construction or design-related parameters. Integrating GRs into urban areas can be challenging given the diversity of actors, functions, and conditions characterizing these areas. Although significant research has already been conducted on GRs, research covering more geographical locations and contexts is needed. The review points out the need to include future urbanization scenarios, such as tall buildings while analyzing the impact of GRs on ecological networks. Additionally, the review emphasizes the inclusion of urban morphological parameters alongside an analysis of the impact of GRs on microclimate regulation and air quality. In terms of social acceptance, this review points out the need to consider the temporal cycles of vegetation for noting users’ perspectives. Additionally, further research is required on the social impact of GRs, considering their influence on property prices. Lastly, the review stresses the need for more city-scale studies on the impact of GRs on ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.