The mitochondrion is a vital intracellular organelle for retinal cell function and survival. There is growing confirmation to support an association between mitochondrial dysfunction and a number of retinal degenerations. Investigations have also unveiled mitochondrial genomic instability as one of the contributing factors for age-related retinal pathophysiology. This review highlights the role of mitochondrial dysfunction originating from oxidative stress in the etiology of retinal diseases including diabetic retinopathy, glaucoma and age-related macular degeneration (AMD). Moreover, mitochondrial DNA (mtDNA) damage associated with AMD due to susceptibility of mtDNA to oxidative damage and failure of mtDNA repair pathways is also highlighted in this review. The susceptibility of neural retina and retinal pigment epithelium (RPE) mitochondria to oxidative damage with ageing appears to be a major factor in retinal degeneration. It thus appears that the mitochondrion is a weak link in the antioxidant defenses of retinal cells. In addition, failure of mtDNA repair pathways can also specifically contribute towards pathogenesis of AMD. This review will further summarize the prospective role of mitochondria targeting therapeutic agents for the treatment of retinal disease. Mitochondria based drug targeting to diminish oxidative stress or promote repair of mtDNA damage may offer potential alternatives for the treatment of various retinal degenerative diseases.
Expression of calcitonin (CT) and its receptor (CTR) is elevated in advanced prostate cancer, and activated CT-CTR autocrine axis plays a pivotal role in tumorigenicity and metastatic potential of multiple prostate cancer cell lines. Recent studies suggest that CT promotes prostate cancer metastasis by reducing cell-cell adhesion through the disassembly of tight and adherens junctions and activation of B-catenin signaling. We attempted to identify a class of molecules that enhances cell-cell adhesion of prostate cells and reverses the disruptive actions of CT on tight and adherens junctions. Screening several compounds led to the emergence of phenyl-methylene hydantoin (PMH) as a lead candidate that can augment cell-cell adhesion and abolish disruptive actions of CT on junctional complexes. PMH reduced invasiveness of PC-3M cells and abolished proinvasive actions of CT. Importantly, PMH did not display significant cytotoxicity on PC-3M cells at the tested doses. I.p. administered PMH and its S-ethyl derivative remarkably decreased orthotopic tumor growth and inhibited the formation of tumor micrometastases in distant organs of nude mice. PMH treatment also reduced the growth of spontaneous tumors in LPB-Tag mice to a significant extent without any obvious cytotoxic effects. By virtue of its ability to stabilize cell junctions, PMH could reverse the effect of CT on junctional disruption and metastasis, which strengthens the possibility of using PMH as a potential drug candidate for CT-positive androgen-independent prostate cancers.
Retinal microvascular alterations have been observed during diabetic retinopathy (DR) due to the retinal susceptibility towards subtle pathological alterations. Therefore, retinal microvascular pathology is essential to understand the nature of retinal degenerations during DR. In this review, the role of retinal microvasculature complications during progression of DR, along with recent efforts to normalize such alterations for better therapeutic outcome, will be underlined. In addition, current therapeutics and future directions for advancement of standard treatment for DR patients will be discussed.
Prostate cancer (PC) 2 is the most commonly diagnosed cancer and the second leading cause of cancer deaths in men in the United States (1, 2). Although androgen ablation therapy is effective in men with advanced disease for some time, the disease subsequently progresses to the androgen-independent stage. The population of prostate cells expressing neuroendocrine factors such as calcitonin (CT) also increases during this progression (3-5). At this stage, the disease is metastatic and chemoresistant. Present evidence suggests that cancer metastasis is usually preceded by the disruption of normal cell-cell adhesion and the loss of integrity of the primary tumor site (6, 7). This process may include several genetic, molecular, and morphological changes characterized by epithelial-to-mesenchymal transition (EMT) (8 -10). The EMT is characterized by the loss of cell polarity, altered cell-cell and cell-matrix adhesion, and acquisition of migratory, mesenchymal phenotype. Other reported changes include down-regulation of E-cadherin, induction of N-cadherin, release of -catenin from junctional complexes, and its translocation to the nucleus (11-13). However, the precise molecular mechanisms associated with this process are obscure.Several growth factors, including hepatocyte growth factor, transforming growth factor-, vascular endothelial growth factor, and epidermal growth factor, have been reported to induce EMT in tumor cell lines (14 -16). We have shown that the expression of CT and its G protein-coupled receptor (CTR) is remarkably higher in advanced PCs, and the CT-CTR autocrine axis is a potent stimulator of PC cell tumorigenicity, invasion, and metastasis (4,(17)(18)(19). Although CT-stimulated increase in the motility and invasion of PC cells may be mediated by CTstimulated secretion of matrix metalloproteinases and urokinase-type plasminogen activator, the precise molecular mechanisms preceding these CTR actions remain to be elucidated (18,20). We tested the hypothesis that CT induces biochemical and morphological changes associated with EMT to increase the invasiveness of PC cells.Our results indicate that activation of the CT-CTR autocrine axis in prostate cancer cells induced several changes associated with EMT such as remodeling of tight and adherens junctions, cadherin switching, and activation of WNT/-catenin signaling. In contrast, the silencing of the CT-CTR axis reversed this process. Moreover, cyclic AMP-dependent protein kinase (PKA) plays a key role in this CT-CTR-mediated process. This is the first study demonstrating the action of prostate CTR on junctional complexes and WNT/-catenin signaling of PC cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.