Identifying conservation units below the species level is becoming increasingly important, particularly when limited resources necessitate prioritization for conservation among such units. This problem is exemplified with caribou, a mammal with a circum-Arctic distribution that is exposed to a broad spectrum of ecological conditions, but is also declining in many parts of its range. We used microsatellite markers to evaluate the suitability of existing intra-specific taxonomic designations to act as population units for conservation and contrasted this with landscape features that were independent of taxonomy. We also quantified the relationship between genetic differentiation and subpopulation size, a factor that has been under-represented in landscape genetic research. Our data set included three subspecies and three ecotypes of caribou that varied in population size by five orders of magnitude. Our results indicated that genetic structure did not correspond to existing taxonomic designation, particularly at the level of ecotype. Instead, we found that major valleys and population size were the strongest factors associated with substructure. There was a negative exponential relationship between population size and F(ST) between pairs of adjacent subpopulations, suggesting that genetic drift was the mechanism causing the structure among the smallest subpopulations. A genetic assignment test revealed that movement among subpopulations was a fraction of the level needed to stabilize smaller subpopulations, indicating little chance for demographic rescue. Such results may be broadly applicable to landscape genetic studies, because population size and corresponding rates of drift have the potential to confound interpretations of landscape effects on population structure.
Muskoxen (Ovibos moschatus) are an integral component of Arctic biodiversity. Given low genetic diversity, their ability to respond to future and rapid Arctic change is unknown, although paleontological history demonstrates adaptability within limits. We discuss status and limitations of current monitoring, and summarize circumpolar status and recent variations, delineating all 55 endemic or translocated populations. Acknowledging uncertainties, global abundance is ca 170 000 muskoxen. Not all populations are thriving. Six populations are in decline, and as recently as the turn of the century, one of these was the largest population in the world, equaling ca 41% of today's total abundance. Climate, diseases, and anthropogenic changes are likely the principal drivers of muskox population change and result in multiple stressors that vary temporally and spatially. Impacts to muskoxen are precipitated by habitat loss/degradation, altered vegetation and species associations, pollution, and harvest. Which elements are relevant for a specific population will vary, as will their cumulative interactions. Our summaries highlight the importance of harmonizing existing data, intensifying long-term monitoring efforts including demographics and health assessments, standardizing and implementing monitoring protocols, and increasing stakeholder engagement/contributions.
Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.
We evaluated blood collected on Nobuto filter-paper (FP) strips for use in detecting Brucella spp. antibodies in caribou. Whole blood (for serum) and blood-saturated FP strips were obtained from 185 killed arctic caribou (Rangifer tarandus groenlandicus). Sample pairs (serum and FP eluates) were simultaneously tested in duplicate using competitive enzyme-linked immunosorbent assay (c-ELISA) and indirect ELISA (i-ELISA) for Brucella spp. Prior work based on isolation of Brucella spp. revealed sensitivity (SE) and specificity (SP) of 100% and 99%, respectively, for both these serum assays in caribou. Infection status of the animals in the current study was unknown but recent sampling had revealed clinical brucellosis and >40% Brucella antibody prevalence in the herd. To assess the performance of FP relative to serum in these assays, serum was used as the putative gold standard. On both assays, the findings for duplicate runs (A and B) were similar. For c-ELISA run A, the FP Brucella prevalence (47%) was lower than serum prevalence (52%), with SE 89% (95% confidence interval [CI]: 82-95%) and SP 99% (97-100%). For i-ELISA run A, serum and FP Brucella prevalence rates were identical (43%), and the SE and SP of FP testing were 100% and 99% (97-100%), respectively. The findings suggest better FP test performance with i-ELISA than with c-ELISA; however, i-ELISA does not distinguish cross-reacting antibodies induced by Brucella vaccination or exposure to certain other Gram-negative pathogens. Results for duplicate FP eluates (prepared using separate FP strips from each animal) were strongly correlated for both protocols (r=0.996 and 0.999 for c-ELISA and i-ELISA, respectively), indicating minimal variability among FPs from any individual caribou. Dried caribou FP blood samples stored for 2 mo at room temperature are comparable with serum for use in Brucella spp. c-ELISA and i-ELISA. Hunter-based FP sampling can facilitate detection of disease exposure in remote regions and under adverse conditions, and can expand wildlife disease surveillance across temporospatial scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.