Aim The incidence of major fires is increasing globally, creating extraordinary challenges for governments, managers and conservation scientists. In 2019–2020, Australia experienced precedent‐setting fires that burned over several months, affecting seven states and territories and causing massive biodiversity loss. Whilst the fires were still burning, the Australian Government convened a biodiversity Expert Panel to guide its bushfire response. A pressing need was to target emergency investment and management to reduce the chance of extinctions and maximise the chances of longer‐term recovery. We describe the approach taken to rapidly prioritise fire‐affected animal species. We use the experience to consider the organisational and data requirements for evidence‐based responses to future ecological disasters. Location Forested biomes of subtropical and temperate Australia, with lessons for other regions. Methods We developed assessment frameworks to screen fire‐affected species based on their pre‐fire conservation status, the proportion of their distribution overlapping with fires, and their behavioural/ecological traits relating to fire vulnerability. Using formal and informal networks of scientists, government and non‐government staff and managers, we collated expert input and data from multiple sources, undertook the analyses, and completed the assessments in 3 weeks for vertebrates and 8 weeks for invertebrates. Results The assessments prioritised 92 vertebrate and 213 invertebrate species for urgent management response; another 147 invertebrate species were placed on a watchlist requiring further information. Conclusions The priority species lists helped focus government and non‐government investment, management and research effort, and communication to the public. Using multiple expert networks allowed the assessments to be completed rapidly using the best information available. However, the assessments highlighted substantial gaps in data availability and access, deficiencies in statutory threatened species listings, and the need for capacity‐building across the conservation science and management sectors. We outline a flexible template for using evidence effectively in emergency responses for future ecological disasters.
Artificial refuges are human-made structures that aim to create safe places for animals to breed, hibernate, or take shelter in lieu of natural refuges. Artificial refuges are used across the globe to mitigate the impacts of a variety of threats on wildlife, such as habitat loss and degradation. However, there is little understanding of the science underpinning artificial refuges, and what comprises best practice for artificial refuge design and implementation for wildlife conservation. We address this gap by undertaking a systematic review of the current state of artificial refuge research for the conservation of wildlife. We identified 224 studies of artificial refuges being implemented in the field to conserve wildlife species. The current literature on artificial refuges is dominated by studies of arboreal species, primarily birds and bats. Threatening processes addressed by artificial refuges were biological resource use (26%), invasive or problematic species (20%), and agriculture (15%), yet few studies examined artificial refuges specifically for threatened (Vulnerable, Endangered, or Critically Endangered) species (7%). Studies often reported the characteristics of artificial refuges (i.e. refuge size, construction materials; 87%) and surrounding vegetation (35%), but fewer studies measured the thermal properties of artificial refuges (18%), predator activity (17%), or food availability (3%). Almost all studies measured occupancy of the artificial refuges by target species (98%), and over half measured breeding activity (54%), whereas fewer included more detailed measures of fitness, such as breeding productivity (34%) or animal body condition (4%). Evaluating the benefits and impacts of artificial refuges requires sound experimental design, but only 39% of studies compared artificial refuges to experimental controls, and only 10% of studies used a before-after-control-impact (BACI) design. As a consequence, few studies of artificial refuges can determine their overall effect on individuals or populations. We outline a series of key steps in the design, implementation, and monitoring of artificial refuges that are required to avoid perverse outcomes and maximise the chances of achieving conservation objectives. This review highlights a clear need for increased rigour in studies of artificial refuges if they are to play an important role in wildlife conservation.
One technique used to combat the growing global species extinction crisis has been to create artificial refuges-human-made replacements for natural refuges destroyed during habitat modification. However, there is limited knowledge of how closely artificial refuges replicate the natural refuges they seek to replace. Mining threatens many species worldwide through large-scale habitat modification, and artificial refuges have been proposed as a method to offset the resulting habitat loss. Here, we examined the microclimatic, physical, and biotic characteristics of natural dens occupied by the northern quoll (Dasyurus hallucatus)-an endangered marsupial threatened by habitat loss-and compared these to (a) superficially similar unoccupied crevices, and (b) artificial dens created by mining companies for northern quolls. Northern quolls occupied natural dens that were cooler and deeper than unoccupied crevices, likely to avoid lethal air temperatures as well as predators. Artificial dens provided similar thermal properties to occupied dens, but lacked key characteristics in having shallower den cavities, less complex surrounding habitat, increased feral cat visitation, and less small mammal prey compared to occupied dens.This study highlights the need to consider multiple facets when constructing artificial refuges, in order to avoid perverse outcomes, such as inadequate shelter, increased predation, and food shortages.activity patterns, artificial den, artificial refuge, Dasyurus hallucatus, feral cat, habitat loss, habitat restoration, northern quoll, revegetation, thermal limits
In response to Australia’s current extinction crisis, substantial research efforts have been targeted towards some of the most imperilled species. One such species is the northern quoll (Dasyurus hallucatus), a marsupial predator that has recently suffered substantial declines in range and is now listed as Endangered. We conducted a systematic review of all literature relevant to the conservation and ecology of northern quolls. We reviewed 143 studies, including research articles, government and industry reports, theses, and books, and quantified research effort in terms of topic, location, and publication period. We then summarised research relevant to northern quoll taxonomy, genetics, distribution, habitat associations, diet, reproduction, movement, threats, management, and Indigenous knowledge. Research effort was higher between 2011 and 2020 than the previous four decades combined. Northern quolls in the Northern Territory were the most studied, followed by the Pilbara, the Kimberley, and Queensland populations. Most studies focused on northern quoll distribution and habitat, management, and threats – primarily cane toads, predation, and fire. We conclude with a non-exhaustive list of ten future research directions. If pursued, these future research directions should provide information critical to managing and conserving northern quolls.
Goals 1. Ensure that critical resources are used efficiently, namely staff and personal protective equipment (PPE). 2. Provide guidance for the appropriate use of EP and CIED services during the pandemic. 3. Minimise adverse patient outcomes during the pandemic period where resources are limited. 4. Minimise exposure of patients and health care workers. Key Considerations 1. Mandatory training of staff on use of PPE. 2. Tailoring of the current document to local demand for EP and CIED services, local outbreak patterns, local hospital recommendations, hospital PPE supply chain, and hospital contingency plans and/or crisis capacity status. 3. Encourage patient specific risk assessment and sound clinical judgment, weighing the risk vs. benefits of delaying intervention versus risk of patient and staff infection with COVID-19, and use of precious PPE resources. 4. Realignment of the delivery of EP and CIED services with a switch to telehealth and remote monitoring, where feasible. 5. Division of physicians and allied health professionals into separate teams, with minimal in-person interaction between team members 6. Where feasible, segregation of labs and equipment for use in patients with suspected or confirmed COVID-19. 7. Temporary deferment of non-critical ambulatory monitoring services to minimise direct patient contact. 8. Rapid completion of inpatient EP and CIED procedures which cannot be deferred for 1-3 months. 9. Temporary deferment of non-urgent elective EP and CIED procedures. 10. Outpatient procedures limited to only those deemed urgent or deemed ''semi-urgent" where risks of prolonged deferment are unacceptably high. 11. Individual patient screening for COVID-19 exposure risk as per local hospital recommendations, and appropriate use of PPE. Keywords COVID-19 Cardiac electrophysiology Cardiac implantable electronic devices Personal protective equipment Congenital heart disease e58 S. Kumar et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.