Urbanisation largely consists of removing native vegetation. Plants that remain interact with air quality in complex ways. Pollutants can be detrimental to plant growth; plants sometimes reduce air quality, yet some species also improve it through phytoremediation. A common pollutant of concern to human health in urban areas is particulate matter (PM), small particles of solid or liquid. Our study compared roadside moss turfs with leaves of a common Australian tree species, Pittosporum undulatum, in their ability to capture PM along an urban gradient. We sampled nine sites, three in each of three levels of urbanisation: low, medium, and high according to road type (freeway, suburban road, quiet peri-urban road). In addition, we deployed a PM monitor over a two-week period in one site of each urban level to provide concentrations of PM2.5. We used chlorophyll fluorescence (Fv/Fm; maximum quantum yield of photosystem II) as a measure of plant stress. We extracted PM in three size fractions using a filtration and washing technique with water and chloroform. Site averages for moss turfs were between 5.60 and 33.00 mg per g dry weight for total PM compared to between 2.15 and 10.24 mg per g dry weight for the tree leaves. We found that moss was more sensitive to increasing urbanisation, both in terms of trapping proportionately more PM than the leaves, and also in terms of photosynthetic stress, with moss Fv/Fm declining by a site average of 40% from low to high urban “class” (0.76 to 0.45). Our study highlights the stressors potentially limiting moss persistence in cities. It also demonstrates its ability to trap PM, a trait that could be useful in urban applications relating to urban greening or air quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.