By aligning virtual augmentations with real objects, optical see-through head-mounted display (OST-HMD)-based augmented reality (AR) can enhance user-task performance. Our goal was to compare the perceptual accuracy of several visualization paradigms involving an adjacent monitor, or the Microsoft HoloLens 2 OST-HMD, in a targeted task, as well as to assess the feasibility of displaying imaging-derived virtual models aligned with the injured porcine heart. With 10 participants, we performed a user study to quantify and compare the accuracy, speed, and subjective workload of each paradigm in the completion of a point-and-trace task that simulated surgical targeting. To demonstrate the clinical potential of our system, we assessed its use for the visualization of magnetic resonance imaging (MRI)-based anatomical models, aligned with the surgically exposed heart in a motion-arrested open-chest porcine model. Using the HoloLens 2 with alignment of the ground truth target and our display calibration method, users were able to achieve submillimeter accuracy (0.98 mm) and required 1.42 min for calibration in the point-and-trace task. In the porcine study, we observed good spatial agreement between the MRI-models and target surgical site. The use of an OST-HMD led to improved perceptual accuracy and task-completion times in a simulated targeting task.
We conducted a systematic review of recent literature to understand the current challenges in the use of optical see-through head-mounted displays (OST-HMDs) for augmented reality (AR) assisted surgery. Using Google Scholar, 57 relevant articles from 1 January 2021 through 18 March 2022 were identified. Selected articles were then categorized based on a taxonomy that described the required components of an effective AR-based navigation system: data, processing, overlay, view, and validation. Our findings indicated a focus on orthopedic (n=20) and maxillofacial surgeries (n=8). For preoperative input data, computed tomography (CT) (n=34), and surface rendered models (n=39) were most commonly used to represent image information. Virtual content was commonly directly superimposed with the target site (n=47); this was achieved by surface tracking of fiducials (n=30), external tracking (n=16), or manual placement (n=11). Microsoft HoloLens devices (n=24 in 2021, n=7 in 2022) were the most frequently used OST-HMDs; gestures and/or voice (n=32) served as the preferred interaction paradigm. Though promising system accuracy in the order of 2–5 mm has been demonstrated in phantom models, several human factors and technical challenges—perception, ease of use, context, interaction, and occlusion—remain to be addressed prior to widespread adoption of OST-HMD led surgical navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.