The western quarter of North America consists of accreted terranes--crustal blocks added over the past 200 million years--but the reason for this is unclear. The widely accepted explanation posits that the oceanic Farallon plate acted as a conveyor belt, sweeping terranes into the continental margin while subducting under it. Here we show that this hypothesis, which fails to explain many terrane complexities, is also inconsistent with new tomographic images of lower-mantle slabs, and with their locations relative to plate reconstructions. We offer a reinterpretation of North American palaeogeography and test it quantitatively: collision events are clearly recorded by slab geometry, and can be time calibrated and reconciled with plate reconstructions and surface geology. The seas west of Cretaceous North America must have resembled today's western Pacific, strung with island arcs. All proto-Pacific plates initially subducted into almost stationary, intra-oceanic trenches, and accumulated below as massive vertical slab walls. Above the slabs, long-lived volcanic archipelagos and subduction complexes grew. Crustal accretion occurred when North America overrode the archipelagos, causing major episodes of Cordilleran mountain building.
Crustal blocks accreted to North America form two major belts that are separated by a tract of collapsed Jurassic-Cretaceous basins extending from Alaska to Mexico. Evidence of oceanic lithosphere that once underlay these basins is rare at Earth's surface. Most of the lithosphere was subducted, which accounts for the general difficulty of reconstructing oceanic regions from surface evidence. However, this seafloor was not destroyed; it remains in the mantle beneath North America and is visible to seismic tomography, revealing configurations of arc-trench positions back to the breakup of Pangea. The double uncertainty of where trenches ran and how subducting lithosphere deformed while sinking in the mantle is surmountable, owing to the presence of a special-case slab geometry. Wall-like, linear slab belts exceeding 10,000 km in length appear to trace out intra-oceanic subduction zones that were stationary over tens of millions of years, and beneath which lithosphere sank almost vertically. This hypothesis sets up an absolute lower-mantle reference frame. Combined with a complete Atlantic spreading record that positions paleo-North America in this reference frame, the slab geometries permit detailed predictions of where and when ocean basins at the leading edge of westwarddrifting North America were subducted, how intra-oceanic subduction zones were overridden, and how their associated arcs and basement terranes were sutured to the continent. An unconventional paleogeography is predicted in which mid-to late Mesozoic arcs grew in a long-lived archipelago located 2000-4000 km west of Pangean North America (while also consistent with the conventional view of a continental arc in early Mesozoic times). The Farallon Ocean subducted beneath the outboard (western) edge of the archipelago, whereas North America converged on the archipelago by westward subduction of an intervening, major ocean, the Mezcalera-Angayucham Ocean. The most conspicuous geologic prediction is that of an oceanic suture that must run along the entire western margin of North America. It formed diachronously between ca. 155 Ma and ca. 50 Ma, analogous to diachro nous suturing of southwest Pacific arcs to the northward-migrating Australian continent today. We proceed to demonstrate that this suture prediction fits the spatio-temporal evidence for the collapse of at least 11 Middle Jurassic to Late Cretaceous basins wedged between the Intermontane and Insular-Guerrero superterranes, about half of which are known to contain mantle rocks. These relatively late suturing ages run counter to the Middle Jurassic or older timing required and asserted by the prevailing, Andean-analogue model for the North American Cordillera. We show that the arguments against late suturing are controvertible, and we present multiple lines of direct evidence for late suturing, consistent with geophysical observations. We refer to our close integration of surface and subsurface evidence from geology and geophysics as "tomotectonic analysis." This type of analysis provides a str...
Plate reconstructions since the breakup of Pangaea are mostly based on the preserved spreading history of ocean basins, within absolute reference frames that are constrained by a combination of age‐progressive hotspot tracks and paleomagnetic data. The evolution of destructive plate margins is difficult to constrain from surface observations as much of the evidence has been subducted. Seismic tomography can directly constrain paleotrench locations by imaging subducted lithosphere in the mantle. This new evidence, combined with the geological surface record of subduction, suggests that several intraoceanic arcs existed between the Farallon Ocean and North America during late Mesozoic times—in contrast to existing quantitative models that typically show long‐lived subduction of the Farallon plate beneath the continental margin. We present a continuously closing plate model for the eastern Pacific basin from 170 Ma to present, constrained using “tomotectonic analysis”—the integration of surface and subsurface data. During the Middle to Late Jurassic, we show simultaneous eastward and westward subduction of oceanic plates under an archipelago composed of Cordilleran arc terranes. As North America drifts westward, it diachronously overrides the archipelago and its arcs, beginning in the latest Jurassic. During and post‐accretion, Cordilleran terranes are translated thousands of kilometers along the continental margin, as constrained by paleomagnetic evidence. Final accretions to North America occur during the Eocene, ending ~100 Myr of archipelago override. This model provides a detailed, quantitative tectonic history for the eastern Pacific domain, paving the way for tomotectonic analysis to be used in other paleo‐oceanic regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.