Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.
An efficient synthetic route to quadrangularin A and pallidol is reported, featuring a scalable biomimetic oxidative dimerization that proceeds in excellent yield and with complete regioselectivity. A systematic evaluation of the natural products and their synthetic precursors as radical-trapping antioxidants is presented, providing insight to the properties relevant to their purported biological activities.
A new catalyst system capable of selective chloride functionalization in the Pd-catalyzed amination of 3,2- and 5,2- Br/Cl-pyridines is reported. A reaction optimization strategy employing ligand parametrization led to the identification of 1,1'-bis[bis(dimethylamino)phosphino]ferrocene "DMAPF", a readily available yet previously unutilized diphosphine, as a uniquely effective ligand for this transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.